OPERATING INSTRUCTIONS

TYPE

GENERAL RADIO COMPANY

OPERATING INSTRUCTIONS

TYPE 1021-A
 STANDARD -SIGNAL GENERATORS

Form 1021-0100-G
May, 1964

TABLE OF CONTENTS

Page
Section 1 INTRODUCTION 1
1.1 General 1
1.2 Description 1
Section 2 PRINCIPLES OF OPERATION 2
2.1 General 2
2.2 Radio-Frequency Oscillator 2
2.3 Attenuator 4
2.4 Output System 4
2.5 Power Supply Unit 5
Section 3 OPERATING PROCEDURE 5
3.1 Power Supply 5
3.2 Frequency Control 5
3.3 Meter Zero 5
3.4 Carrier Voltmeter Standardization 5
3.5 Setting of Output Voltages Between 0.5 and 2 Volts 6
3.6 Attenuator Standardization 6
3.7 Setting of Output Voltages Below 0.5 Volt 6
3.8 Output Impedance 6
3.9 Modulation 6
3.10 Sweep Drive 7
Section 4 SERVICE AND MAINTENANCE 7
4.1 General 7
4.2 Location of Components 7
4.3 Replacement of Oscillator Tube 7
4.4 Replacement of Rectifier Crystal 8
4.5 Replacement of Regulator Tube V1 9
Section 5 PARTS LIST 10

SPECIFICATIONS

TYPE 1021－AU UHF STANDARD－SIGNAL GENERATOR

Fresuency

Carrier fange： 250 Mc to 940 Mc in one band．
Accuracy：Divect reading to $\pm 1 \%$ ．Approximately 8 tums of the 100 －division slow－motion dial cover the range of the man dial．
Sweeping：The Trpe 1750－A Sweep Drive attached to the slow－motion dial will sweep approximately 5% and 15% at the low－and high－frequency ends of the range， respectively．
Ouput：（1）As voltage generator with acourately known ontput impedance and（2）in terms of available power （db below one milliwatt）．

Volfage Range：Continnously adishable from 0.5 miorovolt to 1 volt behind 50 ohms．

Volvage Accuracy：Over－all aceuracy of output is better than +2 db ．The accuracy of voltmeter calbra－ tion between 0.5 and 1.0 volt is better than $\pm 1 \mathrm{db}$ ． The acouracy of the atenuator－dial calibration for voltages between 1.0 microvolt and 0.1 volt is better than $\pm 0.5 \mathrm{db}$ ；from 0.1 volt to 0.5 volt，better than $\pm 1 \mathrm{db}$ ．

Impedance： 50 olms $\pm 10 \%$ following the output meter．

Powar：Directy calibrated from 0 to 126 db below 1 milliwatt into 50 ohms，
Amplitude Modulaton：Adustable， 0 to 50% ．Internal， 1000 cps $\pm 5 \%$ ．Externul，fat within 3 do from 30 gps to 15 kc For 50% modulation，external audio oscillator must supply 18 wolt across a 100 －kiohm load．Type $1210-\mathrm{O}$ Unit R－G Oscillator is recommended．
Imblemict Frequency Modulation：For 50% amplitude modulution the incidental im is approximately 100 parts per million for frequencies up to 400 Mc and is approximately 1000 parts per million at 920 Me．When lower values of incidental m are required，the $\mathrm{T} P \mathrm{P}$

1000－P6 Crystal Modulator，or the Typy 1000－P7 Bal－ anced Modulator is recommended．
Disiortion and Moise Level
Envelope Distorion：Approximately 5% at 50% modu－ lation．

Carrier Noise Level．Corresponds to about 0.2% modu－ lation．
teakage：Stray felds and residual output voltage are suffeienty low for measurements on receivers of one－ microvolt sensitivity．
Tube Complement：Two 0C3；one each 6X5－GT／G， 6K6－GT，Sylvania Type 6481，Amperite 6－4．
Teminals：Type 874 Coaxial Terminals are provided for the ontput connection．
Power Inpui： 105 to 125 （or 210 to 250 ）volts， 50 to 60 cycles．Power input is approximately 50 watts at 115 volts．

This mstrument will operate satisfactorily on power－ supply trequencies up to 400 eycles，provided that the supply voltage is between 110 and 125 volts．
Accessories Supplied：Trex 874R22 Patch Cord，Type 874－C58 Cable Connector，Type CAP－22 Power Cord， and spare fuses．
 tors，Type 874 Coaxial Elementa
Type 1000－PG Crystal Modulatory Trpe $1000-\mathrm{P} 7 \mathrm{Bal}$ anced Modulator
Mounting：The aluminum cabinet has a wrinke finish． The lefthand side houses the Typm 1021－P1 Power Supply；the righthand side houses the Trpe 1021－P2 UHF Unit Panels in gray are crackle－finkhed alumi－ num．
Dimensions：Width 201／4，height $131 / 2$ ，depth 11 inches （315 by 345 by 280 mm ，over－all．
Ne⿱⿻一⿻口卄日昔 Weight $37 / 2$ pounds（ 17 kg ）．

TYPE 1021－AV VHF STANDARD．SIGNAL GENERATOR
 Same as TYp 1021－AU（above）except as noted．

Catiter Frequency Range： 40 to 50 Mc in one bond， 50 to 250 Mr in another．
\＄weoping：The Type $7700-\mathrm{A}$ Sweep Drive，attached to the slow－motion dial，will sweep the frequency approxi－ mately 4,9 ，and 20% at 40 ， 50 ，and 250 Mc，respec－ tively．
Incidentel Frequency．Modulation：For 50% amplitude modulation the incidental．fm is approximately 100 parts per millon for requencies up to 100 Me ，and is
approximately 500 parts per million at 250 Mc．When lower values of incidental im are recured，the Trma 1000－P6 Crystal Modulator or the Typa 1000－P4 Balm anced Modulator is recommended．
Tube Complement：Same as listed above，except 12AT7 Oscillator（instead of 6481）．
Mounting：Cabinet is same as for Trpa $1021-A U$ ，above． Generator consists of the Type 1021－P1 Power Supply and Txpe 1021－P3B VHF Unit．

Figure 1. Type 1021-AU Standard-Signal Generator.

TYPE 1021-A

STANDARD-SIGNAL GENERATORS

Section 1
 INTRODUCTION

1.1 GENERAL. The Type 1021-AU Standard-Signal Generator (Figure 1) consists of a Type 1021-P2 R-F Unit and a Type 1021-P1 Power Supply, combined in a single aluminum cabinet. Its frequency range of 250 to 940 Mc is covered in a single band.

The Type 1021 -AV Standard-Signal Generator uses the same power supply and cabinet as the Type 1021-AU, but uses the Type 1021-P3B R-F Unit, which covers the frequency range of 40 to 250 Mc in two bands: 40 to 50 Mc and 50 to 250 Mc . Hence, the total range of the Type 1021-A Standard-Signal Generator, with the two interchangeable $r-f$ units, is from 40 to 940 Mc .

If only one cabinet and power supply are available with the two $x-f$ sections, one $r-f$ section can be substituted for the other easily. The only connection between power supply and r-f section is a multiconductor cable and plug attached permanently to the power supply.

1.2 DESCRIPTION.

1.2.1 CONTROLS. The following controls are on the panel of the Type 1021-AU (or 1021-AV) StandardSignal Generator:

NAME

Frequency Dial

ATTENUATOR

RANGE
(Type 1021-AV only)
PUSH TO CAL

CALIBRATE

TYPE
Direct-reading 6 -in. dial. Drive knob has 100 -division dial and covers the range in about 11 turns.

Dial calibrated from $0.5 \mu \mathrm{v}$ to 0.5 v , is set by adjustable index. Index is moved by small knob below dial and is set when reference level is established.

2 -position selector switch

Push-button switch

Rotary knob

FUNCTION

Selects frequency.

Drives mutual-inductance-type attenuator through a rack and pinion.

Selects either $40-50 \mathrm{Mc}$ or $50-250-\mathrm{Mc}$ range.

Applies $0.5 \mathrm{v}, 60 \mathrm{cps}$ across carrier voltmeter-rectifier and simultaneously turns off plate supply of carrier oscillator.

Adjusts meter sensitivity to read 0.5 v when PUSH TO CAL is depressed.

NAME	TYPE
METER READS	2-position toggle switch

MODULATION Rotary knobs (2)

POWER-OFF

FUNCTION

In CARRIER position, meter indicates voltage across crystal rectifier just ahead of output terminating resistor. Voltages of 0.5 y and over are read directly. In MOD position, meter indicates audio-frequency voltage appearing at carrier oscillator plate in terms of percent modulation. Full scale corresponds to about 50 v and to 50% modulation.

Left-hand knob turns modulation off, selects external modulation, or internal modulation at 1 kc . Right-hand knob controls amplitude of modulating voltage.

Energizes instrument.
1.2.2 CONNECTIONS. The connections listed below are on the panel of the Type 1021-AU (or 1021-AV) Standard-Signal Generator.

$\frac{1}{\text { NAME }}$	TYPE	FUNCTION
OUTPUT	Coaxial connector	Output terminal.
EXT MOD	Binding posts (2)	Connection to external modulating source.

Section 2

PRINCIPLES OF OPERATION

2.1 GENERAL. The functional arrangement of the instrument is shown in Figure 2. The upper part of the diagram represents the $r-f$ section and the lower part the power supply, The operating frequency is set by the main six-inch dial of the carrier oscillator. The output voltage is controlled by the ATTENUATOR control. High output voltages are read directly on the carrier meter, which is energized by the carrier voltmeter-rectifier in the $r-f$ section. Low output voltages are set by the ATTENUATOR after a reference level is established at 0.5 volt by means of the meter.

The output impedance is determined by the cylindrical 50 -ohm resistor between the carrier volt-meter-rectifier and the output terminal on the panel.

Amplitude modulation is produced in the plate supply of the oscillator by an internal 1000 -cycle oscillator or modulation amplifier, depending on the position of the MODULATION switch. The depth of modulation is indicated by the panel voltmeter when the METER READS switch is set to MOD.

2.2 RADIO-FREQUENCY OSCILLATOR,

2.2.1 TYPE 1021-P2 (250-940 MC). (For schematic diagrams, see Figures 9 and 10.) The Type 1021-P2 $\mathrm{R}-\mathrm{F}$ Unit is housed within two concentric shields on a cylindrical aluminum casting. The tuning unit is a $2-1 / 2$-inch-diameter butterfly circuit (Figure 3) in which both inductance and capacitance are varied without the use of sliding contacts. The wide frequency range is covered by a rotation of about 80 degrees of the rotor.

The oscillator mbe (V200) is a Sylvania Type 6481 Rocket-Type Co-planar Triode. Connections to the electrodes are made with flexible clamps designed to provide low-impedance paths to the tuned circuit and to conduct heat from the tube terminals to the mass of the tuned circuit for cooling. The oscillator uses a Colpitts circuit in which oscillation conditions are determined mainly by the tube grid-to-cathode and plate-to-cathode capacitances. Additional plate-to-cathode capacitance is provided by means of two small soft-copper tabs, C207A and

Figure 2. Functional Block Diagram.

Figure 3. Type 1021-P2 U-H-F Unit, Cover Removed to Show Tube and Butterfly Circuit.

C 207 B , held close to the plate and connected to the cathode by means of a hor seshoe-shaped supporting member. See Figure 6 for mechanical details.

All the tube elements are fed through chokes. Amplitude modulation up to 50 percent is obtained by plate-voltage modulation. Both heater andplate supplies are regulated. For 50 -percent amplitude modulation the incidental fm is less than 0.01 percent up to 400 Mc , and less than 0.10 percent up to 920 Mc .

A simple but rugged 50 -to- 1 worm-gear drive connects the butterfly rotor to the vernier frequency control, while a pinion on the worm shaft drives the direct-reading main frequency dial by means of its internally cut spur gear. Eleven turns of the vernier dial rotate the rotor through 81 degrees and the main dial through 270 degrees.
2.2.2 TYPE 1021-P3B (40-250 MC). (For schematic diagrams, see Figures 7 and 8.) For the lower-frequency range, a 4-1/2-inch-diameter semibutterfly tuning circuit is used since it can be made smaller than a true butterfly circuit. A standard miniature twin triode, Type 12AT7, is used as the oscillator tube (V100). The two triodes are connected in pushpull across the high-impedance points of the tuned circuit. The rotor turns through 180 degrees to change the frequency from 50 to 250 Mc . To give an additional range of $40-50 \mathrm{Mc}$, a range switch (S101) connects a low-loss, low-inductance capacitance (C114A and C 114 B) of about $80 \mu \mu \mathrm{f}$ across the tuned circuit. The oscillator is mounted on the top of the cylindrically shaped aluminum casting, and is enclosed by two concentric shields. All leads to the oscillator circuit are well filtered. Amplitude modulation up to 50 percent is obtained by plate modulation. Both heater and plate supplies are regulated. For $50-$ percent amplitude modulation the incidental fm is less than 0.01 percent up to 100 Mc and approximately 0.05 percent at 250 Mc .

A simple but rugged and smooth 22 -to- 1 wormgear drive connects the butterfly rotor to the vernier frequency control, while a pinion on the worm shaft drives the direct-reading main frequency dial by means of its internally cut spur gear. Eleven turns of the vernier dial rotate the rotor through 180 degrees and the main dial through 264 degrees.
2.3 ATTENUATOR. The pickup or output coupling loop on the piston of the mutual-inductance-type attenuator is coupled directly to the $r-f$ field of the butterfly oscillator as shown in Figures 8 and 10. The attenuator tube is just below the oscillator tuned circuit, and extends through the casting base to the rear compartment, which houses the frequency and attenuator drive mechanisms. A simple electrostatic shield (or mode suppressor) is mounted at the input end of the attenuator tube, so that, except for a short
distance near the imput end, the r-fenergy is attenuated at the rate of 32 db per tube diameter. The inside diameter of the attenuator tube is 0.600 inch in the 250-940 Mc Unit and 0.880 inch in the Type 40250 Mc Unit. To attenuate 1 volt to 0.5 microvolt (126 db) therefore, the pickup loop must be moved 2.36 inches and 3.46 inches respectively. The attenuator dial, which drives the attenuator piston by means of a rack and pinion, is calibrated in accordance with this law.
2.4 OUTPUT SYSTEM. (See Figure 4.) One end of the attenuator pickup loop is grounded through a 50 ohm terminating resistor, and the other end is connected to a short length of 50 -ohm flexible shielded lead, which connects to the Type 874-VR Crystal Voltmeter Rectifier mounted at the lower right-hand corner of the panel. The volmeter unit is built into a coaxial T section and the $\mathrm{r}-\mathrm{f}$ output voltage is measured at a point just ahead of the 50 -ohm cylindrical terminating resistor in the center conductor of the output connector. The rectified output of the crystal drives the output voltmeter located on the power supply panel.

The voltage readings on the meter and attenuator are open-circuit voltages. Thus, to determine the correct value of voltage appearing across a matched 50 -ohm load, divide the meter or attenuator dial reading by 2 . The voltage appearing across an arbitrary load impedance of value Z_{L} is $E\left(\frac{Z_{L}}{Z_{L}+50}\right)$, in which E is the reading of the meter or the attenuator dial.

Figure 4. Functional Diagram of Output System.

2.5 POWER SUPPLY UNIT.

2.5.1 POWER SUPPLY. (For schematic diagrams, see Figures 13 and 14.) The power supply furnishes essentially constant plate and filament voltages to the carrier oscillator. The simple VR tube circuit (V3, V4) regulates plate voltage over a line-voltage range of 105 to 125 volts or 210 to 250 volts at 50 to 60 cycles. The Amperite current regulator tube (V1) maintains the heater voltage for the carrier oscillator. A portion of the regulated heater voltage is used as a calibrating source for the carrier volmeter.
2.5.2 MODULATION. The modulator circuit consists of a single Type 6K6-GT tube (V5), which is
connected either as an L-C 1-kc oscillator for internal modulation or as a power amplifier for use with external modulation. For 50 -percent modulation it supplies about 50 volts rms to the carrieroscillator plate. The modulating voltage is controlled by the 100 -kilohm rheostat R10 on the right-hand side of the power supply panel. For internal modulation, R10 controls the output of the audio oscillator. For external modulation the control is switched to control the input to the amplifier.
2.5.3 PANEL METER. The panel meter can be switched, by means of the METER READS switch, to indicate either the d-c output from the carrier voltmeter rectifier or the d-c output from the germanium diodes of the modulation volmeter.

Section 3

OPERATING

3.1 POWER SUPPLY. The line voltage and frequency are indicated on the nameplatebelow the power input receptacle. The power-line frequency range is 50 to 60 cycles. The voltage range is either 105 to 125 or 210 to 250 volts. When changing from one voltage range to the other, change the power-transformer connections as shown in Figure 13, reverse the nameplate to indicate the appropriate line voltage, and replace the fuses.

The power supply will not operate unless one of the two r-f oscillators is connected by means of the interconnecting cable.
3.2 FREQUENCX CONTROL. The only frequency control of the $250-940 \mathrm{Mc}$ Unit is the vernier knob on the main frequency dial. The frequency range is covered in 270 degrees of rotation of the dial and 11 turns of the vernier knob. The $40-250 \mathrm{Mc}$ Unit has a range switch in addition (refer to paragraph 2.2.2).
3.3 METER ZERO. With the power off, the meter shouldindicate zero. If itdoes not, it can be adjusted to zero by means of the screw-driver adjustment on the meter (mechanical zero adjustment). This is the only meter zeroing required, since the panel meter indicates on do from crystal rectifiers for either modulation or carrier voltage.

PROCEDURE

3.4 CARRIER VOLTMETER STANDARDIZATION. With the METER READS switch in the CARRIER position, standardize the carrier voltmeter at 0.5 volt by depressing the PUSH TO CAL switch and adjusting the CALIBRATE knob until the meter pointer indicates the red line at 0.5 volt. Depressing the PUSH TO CAL switch removes plate voltage from the carrier oscillator and applies 0.5 volt, 60 cycles across the volmeter rectifier. The attenuator setting does not affect this procedure, but aload that generates an appreciable terminal voltage will cause the meter to deflect and hence upset the meter calibration. Such a load (for instance, a heterodyne receiver with a strong local oscillator) should have its voltage source shut off during standardization.

The effect of the 60-cycle impedance of the load on the standardizing voltage can usually be disregarded. The standardizing-voltage rheostat (R103 or R203) has been set for a 50 -ohm load, and the error for open or shorted conditions is ± 1 percent.

Standardization of the carrier voltmeter should be repeated from time to time to compensate for changes in the Type 1N23-B crystal detector, which may be caused by aging, by overloads, or by changes in temperature and humidity.
3.5 SETTING OF OUTPUT VOLTAGES BETWEEN 0.5 AND 2 VOLTS. After the carrier voltmeter has been standardized, output voltages between 0.5 and 2 volts can be set directly. Adjust the ATTENUATOR control untl the output meter indicates the desired value with the load connected. The voltage indicated on the meter is the voltage across the load in series with the internal 50 -ohm terminating resistor. Aload that generates an appreciable terminal voltage should have its voltage source shut off when the meter is read. Two volts may not beavailable at all frequencies.

Changes in carrier frequency and load impedance will change the output voltage and the carrier voltmeter reading. After every change, the desired meter reading may have to be restored. To restore the reading, reset the ATTENUATOR dial.
3.6 ATTENUATOR STANDARDIZATION. With the signal generator operating at the desired frequency, and with the load connected and the meter reading carrier output voltage, adjust the carrier outputlevel by means of the ATTENUATOR knob until the meter indicates 0.5 volt. Then move the adjustable attenuator index until it lines up with the red line at 0.5 volt on the attenuator dial. Meter and attenuator dial now read alike at 0.5 volt, and the attenuator is standardized for the particular frequency and load. Aload that generates an appreciable terminal voltage should have its voltage source shut off when the meter is read.
3.7 SETTING OF OUTPUT VOLTAGES BELOW 0.5 VOLT. To set output boltages below 0.5 volt, turn the ATTENUATOR dial until the desired value appears under the attenuator index. The voltage indicated by the attenuator index is the voltage across the load and the internal 50 -ohm terminating resistor. As the output level is decreased, the reading of the output meter is gradually decreased to zero.

Changes in carrier frequency and load impedance will change the output voltage, but, at low levels, this change cannot be observed on the output meter. After every change the attenuator must be restandardized at 0.5 volt.

Sometimes, particularly in circuits employing tubes and rectifier crystals, the load impedance changes with the voltage applied. This change occurs at higher voltage levels, and may make it impossible to standardize the attenuator at 0.5 volt as long as the voltage on the load is equally high. If this condition is suspected, the attenuator can still be standardized at 0.5 volt if additional attenuation is inserted between the signal generator output terminal and the load. The Type 874-G2020-db Attenuator is recommended for this purpose.
3.8 OUTPUT IMPEDANCE. As long as the attenuator is standardized for each frequency and load
change, the effective output impedance of the Stand-ard-Signal Generator is 50 ohms. Maintaining a constant voltagelevel at the reference point produces an effective impedance of zero at the output voltmeter. The output impedance of theStandard-Signal Generator is then determined by the terminating resistor at the output terminal. (See Figure 2.)

3.9 MODULATION.

3.9.1 AMPLITUDE MODULATION. Selectelther internal amplitude modulation at 1000 cycles, external amplitude modulation ($30 \mathrm{cps}-15 \mathrm{kc}$), or no modulation by means of the MODULATION switch. With the METER READS switch at MOD, the modulation level is indicated on the meter, and can be adjusted by means of the MODULATION control for any degree of modulation up to 50 percent. For more accurate modulation-level settings, depress the PUSH TO CAL switch while reading the modulation meter.

About 12 volts across 100 kilohms is required from the external modulating oscillator for 50 -percent modulation.

The Standard-Signal Generator is normally am-plitude-modulated by modulating voltages superimposed on the plate supply of the oscillator tubes. Incidental fm inherent in such a system is relatively small, but may be excessive for some applications. Amplitude modulation free of incidental fm can be obtained by the use of auxiliary equipment at the output of the signal generator. A Type 874-G20 20-db Fixed Attenuator is recommended to separate the $d-c$ circuits of the modulators from the carrier meter of the Standard-Signal Generator.
3.9.2 TELEVISION MODULATION. (See Figure 5.) In the Type 1000-P6 Crystal Diode Modulator ${ }^{1}$, modu-lating-frequency voltages are used to vary the resistance of a Type 1N21-B crystal. Therefore, the $x-f$ output of the Standard-Signal Generator can be amplitude-modulated with no incidental fm if the Crystal Diode Modulator is inserted ahead of the load. The modulating-frequency characteristic is flat from zero to several megacycles, and down only 2 db at 5 Mc . A convenient source of video modulation voltages is a television receiver tuned to a local channel. The Type 1000 -P6 Modulator is fitted with Type 874 coaxial terminals for the input and output connections and for the modulation circuit. The modulation range is from zero to about 50 percent. The modulator is designed to operate from a 50 -ohm source into a 50 -ohm load. To avoid distortion, the r-f input to the crystal modulator must be limited to 50 millivolts. The insertion loss is about 12 db over the r-f range of from 20 to 1000 Mc .

[^0]

Figure 5. (Left) Type 1000-P6 Crystal Diode Modulator. (Above) Type 1000-P7 Balanced Modulator.
3.9.3 BALANCED MODULATOR. (See Figure 5.) For linear 100 -percent amplitude modulation, and for pulse modulation with fast rise times and a high degree of carrier suppression, the Type $1000-\mathrm{P} 7$ Balanced Modulator ${ }^{2}$ should be used. This modulator, with a modulation frequency range from 0 to 20 Mc , can be used at carrier frequencies from 60 to 2500 Mc. Crystal diodes are used in two separate signal paths between input and output. A coaxial phasing line, set to an odd multiple of one-half wavelength at the carrier frequency, is inserted in one of the signal paths. By adjustment of the bias of the two diodes the carrier can be balanced out.
3.10 SWEEP DRIVE. For mechanical sweeping at rates up to 5 cycles per second and for sweep ranges up to 5% at the low end of the tuning range, and up to 15% at the high end, the Type $1750-$ A Sweep Drive ${ }^{3}$
is recommended. The sweep drive is set up on a 5inch block in front of the Standard-Signal Generator, with the reciprocating drive shaft fastened to the frequency control dial of the signal generator by means of a universal clutch. For small variations in frequency, the output of the signal generator is constant enough to display response curves on a cathode-ray oscilloscope with long-persistence screen, For larger variations, particularly at the high end of the frequency range, variations in output of the signal generator have to be considered.

[^1]
Section 4

SERVICE AND MAINTENANCE

4.1 GENERAL.

We warrant that each new instrument sold by us is free from defects in material and workmanship, and that, properly used, it will perform in full accordance with applicable specifications for a period of two years after original shipment. Any instrument or component that is found within the two-year period not to meet these standards after examination by our factory, district office, or authorized repair agency personnel, will be repaired for tubes, or batteries that have given normal service.

The two-year warranty stated above attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible. If the difficulty cannotbe eliminated by use of the following service instructions, please write or phone our Service Department
(see rear cover), giving full information of the trouble and of steps taken to remedy it. Be sure to mention the type and serial numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest district office, requesting a Returned Material Tag. Use of this tag will ensure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.
4. 2 LOCATION OF COMPONENTS. The table on page 9 indicates the location of tubes, pilot lights, and fuses in the instrument.
4.3 REPLACEMENT OF OSCILLATOR TUBE. 4.3.1 GENERAL. If the maximum obtainable output of the $r-f$ oscillator is no longer sufficient to stand-
ardize the attenuator at 0.5 volt, the $\mathrm{r}-\mathrm{f}$ oscillator tube must be replaced. After the tube is replaced, several readjustments may be necessary to restore the frequency calibration and to insure that the new tube is operating properly.

4.3.2 TUBE REPLACEMENT IN 250-940-MC UNIT.

 The procedure for replacing the oscillator tube in the Type 1021 -P2 UHF Oscillator Unit ($250-940 \mathrm{Mc}$) is as follows (see Figure 6):a. Remove the two concentric shield cans from the top of the casting.
b. Remove entirely screw holding plate clamp.
c. Loosen grid clamp strap until tube can be slid into position. Place cathode connection just short of filament clip.
d. Carefully tighten grid clamp by bending the ends of the grid clamp strap.
e. Replace plate screw and carefully tighten plate clamp.

USE CAUTION IN TIGHTENING, GLASS SEALS ARE FRAGILE.

f. Check the heater voltage directly at the tube terminals. It should be 6.3 volts $\pm 5 \%$. For this measurement, turn off the plate voltage by pushing the PUSH TO CAL switch. If heater voltage is not within limits, refer to paragraph 4.5 .
g. At the top frequency setting, grid-to-plate capacitance, which varies slightly from tube to tube, is a considerable portion of the total tuning capacitance. Thus the top frequency obtained varies with tube changes. Adjust one of the flexible tabs on the feedback ring so that the oscillator frequency (as determined by frequency-measuring equipment) agrees with the dial at a setting of 940 Mc . The inner shield can should be in place when frequency is measured.
h. With a milliammeter in series with the oscillator plate-supply lead, adjust plate series resistor R210 (screw-driver control on the main casting near the output cable) so that plate current is 28 ma or less as the oscillator is tuned through its range.

Figure 6. Installation Detail, Type 6481 Oscillator Tube.
4.3.3 TUBE REPLACEMENT IN 40-250-MC UNIT. The procedure for replacing the oscillator tube in the Type $1021-\mathrm{P} 3 \mathrm{~B}$ VHF Oscillator Unit ($40-250 \mathrm{Mc}$) is as follows:
a. Remove the two concentric shield cans from the top of the casting.
b. Remove the old tube from the socket and insert the new tube.
c. Check the heater voltage at the tube terminals. It should be 6.3 volts $\pm 10 \%$. For this measurement, turn off the plate voltage by pushing the PUSH TO CAL switch. If heater voltage is not within limits, refer to paragraph 4.5.
d. At the top frequency setting, grid-to-plate capacitance, which varies from tube to tube, is a considerable portion of the total tuning capacitance. Thus the top frequency obtained varies with tube changes. Adjust the trimmer capacitance, C110 (small, slotted rectangular plate spanning the gap in the top stator plate), so that the oscillator frequency (as determined by frequency-measuring equipment) agrees with the dial at a setting of 250 Mc . The inner shield can should be in place when frequency is measured.
e. With a milliammeter in series with the oscillator plate-supply lead, adjust grid resistor R108 (screw-driver control in bottom of lower casting well) so that plate current is 28 ma or less as the oscillator is tuned through its range. The inner shield should be in place for this adjustment.
4. 4 REPLACEMENT OF RECTIFIER CRYSTAL. If the carrier output meter cannot be standardized according to the procedure outlined in paragraph 3.4, the 60 -cycle calibration voltage may not be correct (refer to paragraph 4.5), or the voltmeter crystal may be damaged and need replacement. Remove the crystal from the output voltmeter as follows:
a. After removing the small screw, disconnect the voltmeter output lead, located in back of the panel, just below the PUSH TO CAL switch. (The screw is omitted on some instruments. On these instruments, merely pull the lead from the voltmeter terminal.)
b. Unscrew and remove the voltmeter cap on which the output terminal is located.
c. Loosen the small spring clamp that holds the crystal cartridge in place, and remove the cartridge.

Any Type iN23-B replacement crystal will yield accurate results if used in accordance with instructions in paragraphs 3.4, 3.6, and 3.7 for output voltages below 0.5 volt. For accurate output voltages between 0.5 and 2 volts (paragraph 3.5), the crystal characteristic must match the meter scale. Selected crystals that conform to the original accuracy specifications of the instrument can be obtained from General Radio Company. Any Type $1 \mathrm{~N} 23-\mathrm{B}$ crystal can be checked between 0.5 and 2 volts by the following procedure: Disconnect the long shielded lead from the oscillator circuit by unplugging the con-
nector at the rear of the output voltage-rectifier unit, At this same point, feed into the voltage-rectifier unit an external 60 -cycle calibrating voltage in parallel with an accurate vacuum-tube voltmeter, such as the General Radio Type 1806-A. For this calibration, the power supply must be turned off and the PUSH TO CAL button depressed.
4.5 REPLACEMENT OF REGULATOR TUBE V1. If the heater voltage is not as specified in paragraph 4.3 .2 f or 4.3 .3 c , the regulator tube V1 may be defective. However, before replacing V1, verify the resistance values of the series resistors (R102 and R103 in Type 1021-P3B; R202 and R203 in Type 1021-P2).

If either the Amperite regulator tube (V1) or the r-f oscillator tube is changed, heater currents may change enough to affect the 0.5 -volt voltmeter calibrating voltage. Check this by pushing the PUSH TO CAL switch and measuring the 60 -cycle voltage between the exposed terminal of the Type $874-\mathrm{VR}$ Voltmeter Rectifier (in back of the panel just below the PUSH TO CAL switch) and ground. Use a reliable vacuum-tube voltmeter, such as the General Radio Type 1806-A. If the voltage must be reset, adjust the screw-driver control (R103 or R203) mounted on the resistor strip just above the PUSH TO CAL switch.

LOCATION CHART

Reference Designation	Description	Function	Location
Type 1021-P2 UHF Unit ($250-940 \mathrm{Mc}$) :			
$\begin{aligned} & \mathrm{V} 200 \\ & \mathrm{R} \times 201 \end{aligned}$	TUBE, Sylvania 6481 $\text { DIODE, } 1 \mathrm{~N} 23-\mathrm{B}$	Oscillator Rectifier crystal for rf	On tuned circuit on upper side of oscillator casting within two cylindrical shields. In output voltmeter unit in back of output terminal.
Type 1021-P3B VHF Unit ($40-250 \mathrm{Mc}$)			
$\begin{aligned} & \text { V100 } \\ & \text { RX101 } \end{aligned}$	TUBE, 12 AT 7 DIODE, 1 N23-B	Oscillator Rectifier crystal for rf	On tuned circuit on upper side of oscillator casting within two cylindrical shields. In output voltmeter unit in back of output terminal.
Type 1021-P1 Power Supply:			
V1	TUBE, Amperite 6-4	Heater Regulator	On power-supply shelf. See Figure 15.
V2	TUBE, 6X5-GT/G	Rectifier	See Figure 15.
V3	TUBE, OC3/VR-105	Regulator	See Figure 15.
V4	TUBE, OC3/VR-105	Regulator	See Figure 15.
V5	TUBE, 6K6-GT/G	Modulator	See Figure 15.
RX1	DIODE, 1N34A (S)	Rectifier crystal for modulation	On resistor strip.
RX2	DIODE, IN34A (S)	Rectifier crystal for modulation	On resistor strip.
P1	LAMP, 6-8 v	Pilot light	Mounted on panel.
F1	FUSE, Slo-Blo 3AG	Power fuse	On power-transformer terminal plate.
F2	FUSE, Slo-Blo 3AG	Power fuse	On power-transformer terminal plate.

Section 5

PARTS LIST

NOTES

(A) Type designations for resistors and capacitors:

COC - Capacitor, ceramic
COE - Capacitor, electrolytic
COEB - Capacitor, electrolytic block
COL - Capacitor, oil
COM - Capacitor, mica
COU - Capacitor, unclassiffed
POSC - Potentiometer, composition
POSW - Potentiometer, wire-wound
REC - Resistor, composition
REF - Resistor, film

REPO - Resistor, power
REU - Resistor, unclassified
REW - Resistor, wire-wound
(B) All resistances are in ohms, except as other-wise indicated by k (kilohms) or M (megohms).
(C) Capacitances in micro-microfarads unless otherwise indicated by μ (microfarads).

When ordering replacement parts, be sure to include complete description as well as Part Number (Example: R107, $10, \pm 5 \%, 1 / 2 \mathrm{w}$, REC-20BF.)

Figure 7. Schematic Diagram, Type 1021-P3B V-H-F Unit.

Figure 8. Elementary Schematic Diagram, Type 1021-P3B V-H-F Unit.

			$\begin{gathered} \text { GR NO. } \\ \text { (NOTE A) } \end{gathered}$				$\begin{gathered} \text { GR NO. } \\ \text { (NOTE A) } \end{gathered}$
	TYPE 1021-P2 U-H-F UNIT						
	R200	$5.1 \mathrm{k} \pm 10 \%, 2 \mathrm{w}$	REC-41BF		C209	10, Built-in mica	
	R201	$5.1 \mathrm{k} \pm 10 \%, 2 \mathrm{w}$	REC-41BF		C210	1000 (part of LC201)	1021-214
	R202	$24 \pm 5 \%, 2 \mathrm{w}$	REW-3C		C211	1000 (part of LC201)	COU-25
	R203	$10 \pm 10 \%$	POSW - 3		C212	300-400, built-in mica	
	R205	$1.0 \mathrm{k} \pm 10 \%, 1 / 2 \mathrm{w}$	REC-20BF			(part of RX200)	
	R206	$51 \pm 5 \%, I / 2 \mathrm{w}$	REC-20BF				
	R207	$50 \pm 1 \%$ (part of	REU-10				
	R208	$5 \mathrm{k} \pm 10 \%$	POSW-3		L200	Choke, $45 \mu \mathrm{~h}$	ZCHA-9
	R209	$5.1 \pm 10 \%, 1 / 2 \mathrm{w}$	REW-3C		L201	Choke, $45 \mu \mathrm{~h}$	ZCHA-9
	R210	$2.5 \mathrm{k} \pm 10 \%$	POSC-11		L204	Choke, $20 \mu \mathrm{~h}$	ZCHA-48
	R211	$1 \mathrm{k} \pm 10 \%, 2 \mathrm{w}$	REW-3C		L205	Choke, 45 Hh	ZCHA-9
					L206	Attenuator Loop (part of attenuator)	
$\left\lvert\, \begin{aligned} & 2 \\ & 0 \\ & 0 \\ & E \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \end{aligned}\right.$					L207	Choke, $2 \mu \mathrm{~h}$ (part of LC201)	ZCHA-37
	C200	$16 \mu \mathrm{f}+100 \%-10 \%$,	COE-4		L208	Choke, $45 \mu \mathrm{~h}$	ZCHA-39
		150 dcwv			LC200	Butterfly, 250-920 Mc	Built-in
	C201	$100 \pm 10 \%, 500 \mathrm{dcwv}$	COU-8-2		LC201	Filter	1021-302
	C202	$500 \pm 10 \%, 500 \mathrm{dcwv}$	COU-8-2		LR1	Heater Filter	1021-216
	C203	$200 \pm 10 \%, 500 \mathrm{dcwv}$	COU-8-2		PL200	Plug	CDMP-
	C204	$200 \pm 10 \%, 500 \mathrm{dcwy}$	COU-8-2				1264-8
	C205	$500 \pm 10 \%, 500$ dcwv	COU-8-2		RX200	Voltmeter Rectifier	874-3093
	C206	$500 \pm 10 \%, 500$ dcwv	COU-8-2		RX201	Rectifier (part of RX200)	1N23-B
	C207A	Built-in air adjustment			S200	Switch, tpdt	SWP-3
	C207B	Built-in air adjustment			V200	Tube	6481

NOTES

(A) Type designations for resistors and capacitors:

COE - Capacitor, electrolytic
COEB - Capacitor, electrolytic block
COL - Capacitor, oil
COM - Capacitor, mica
COU - Capacitor, unclassified
POSC - Potentiometer, composition
POSW - Potentiometer, wire-wound
REC - Resistor, composition
REF - Resistor, film

REPO - Resistor, power
REU - Resistor, unclassified
REW - Resistor, wire-wound
(B) All resistances are in ohms, except as otherwise indicated by k (kilohms) or M (megohms).
(C) Capacitances in micro-microfarads unless otherwise indicated by μf (microfarads).

Figure 9. Schematic Diagram, Type 1021-P2 U-H-F Unit.

Figure 10. Elementary Schematic Diagram, Type 1021-P2 U-H-F Unit.

Figure 11. Interior View, Type 1021-P1 Power Supply.

Figure 12. Interior View, Type 1021-P1 Power Supply.

NOTES
(A) Type designations for resistors and capacitors:

COE - Capacitor, electrolytic
COEB - Capacitor, electrolytic block
COL - Capacitor, oil
COM - Capacitor, mica
COU - Capacitor, unclassified
POSC - Potentiometer, composition
POSW - Potentiometer, wire-wound
REC - Resistor, composition
REF - Resistor, film

REPO - Resistor, power
REU - Resistor, unclassified
REW - Resistor, wire-wound
(B) All resistances are in ohms, except as otherwise indicated by k (kilohms) or M (megohms).
(C) Capacitances in microfarads.

Figure 13. Schematic Diagram, Type 1021-P1 Power Supply.

Figure 14. Elementary Schematic Diagram, Type 1021-P1 Power Supply.

Figure 15. Tube Location Diagram, Type 1021-P1 Power Supply.

GENERAL RADIO COMPANY

WEST CONCORD, MASSACHUSETTS,* O1781

SALES ENGINEERING OFFICES

METROPOLITAN
 NEW YORK*
 Broad Avenue of Linden
 Ridgefield, New Jersey, 07657
 Telephone N.Y. 212964-2722
 N.J. 201 943-3140

SYRACUSE

Pickard Building
East Molloy Road
Syracuse, New York, 13211
Telephone 315 454-9323

PHILADELPHIA

1150 York Road
Abington, Pennsylvania, 19001
Telephone 215 887-8486
Phila., 215 424-7419

WASHINGTON* and BALTIMORE

Rockville Pike at Wall Lane
Rockville, Maryland 20852
Telephone 301 946-1600

ORLANDO

113 East Colonial Drive
Orlando, Florida, 32801
Telephone 305 425-4671

[^2]CHICAGO *
6605 West North Avenue
Oak Park, Illinois, 60302
Telephone 312 848-9400

CLEVELAND

5579 Pearl Road
Cleveland, Ohio, 44129
Telephone 216 886-0150
LOS ANGELES*
1000 North Seward Street Los Angeles, California, 90038
Telephone 213 469-6201

SAN FRANCISCO

1186 Los Altos Avenue Los Altos, California, 94022
Telephone 415948-8233
DALLAS
2501-A West Mockingbird Lane Dallas, Texas, 75235
Telephone 214 Fleetwood 7-4031

TORONTO *

99 Floral Parkway
Toronto 15, Ontario, Canada
Telephone 416 247-2171
MONTREAL BRANCH
Office 395, 1255 Laird Boulevard Town of Mount Royal, Quebec, Conada Telephone 514 737-3673,-3674

General Radio Company (Overseas), Zurich, Switzerland
General Radio Company (U.K.) Limited, Bourne End, Buckinghamshire, England Representatives in Principal Overseas Countries

[^0]: 1Byers, W.F., "An Amplitude Modulator for Video Frequencies", Genexal Radio Experimenter, March 1950.

[^1]: ${ }^{2}$ Byers, W.F. "A Balanced Modulator for Pulse Applications", General Radio Experimenter, April, 1954.
 ${ }^{3}$ Karplus, E. "A New System for Automatic Data Display", General Radio Experimenter, April, 1955.

[^2]: * Repair services are available at these offices.

