CATALOG J

GENERAL RADIO GO. CAMBRIDGE, MASS., U.S. A.

CATALOGJ
(4) sprutu, ", wa

GENERAL RADIO COMPANY

 CAMBRIDGE, MASSACHUSETTS, U. S. A.

14-Finishune maxel

16. FORAWHE OSCILATOR SHELT ENDS

凹E SELL DJRECJ。。。

A STATEMENT OF POLICY

To develop the type of product manufactured by the General Riadio Company requires a large staff of enginecrs，each a specialist in one or more phases of the work involved．One of the functions of this staff is to assist the customer in the selection of instruments ian order that the correct equipment may be purchased with a minimum expenditure．

There has always been an intimate contact between our engimeers and customers．The technical nature and the manifold uses of our product make the mantenance of this contact essential．For this reason，the General Ratio Company maintains no sales agencies in the United States，but distributes its products directly to the consumer on a net，no discomnt，basis：

In order that customers outside the Cinted States may receive equivalent technical service，exclusive agencies have been appointed in many foreign countries，each capable of giving tecfinical information regarding General Radio products．In all matters regarding General Radio apparatus the customer should commmicate with the agent from whom this catalog was received．Prices listed in the catalog are for domestic use only．Costs in foreigu countries，where import duty and freight must lie adkled，can le obtained from the agents in those countries．

INDUSTRIAL DEVICES

RESISTORS
CONDENSERS

INDUCTORS
FREQUENCY- AND TIME-MEASURING DEVICES.

OSCILLATORS61
AMPLIFIERS71
BRIDGES AND ACCESSORIES75
STANDARD-SIGNAL GENERATORS95
OSCILLOGRAPHS, CAMERAS, AND ANALYZERS 101
METERS 115
POWER SUPPLIES 123
PARTS AND ACCESSORIES
APPENDIX AND DATA TABLES
161
INDEX BY TYPE NUMBER169
INDEX BY TITLE

SUGGESTIONS FOR ORDERING

ORDER BY TYPE NUMBER

Always order by catalog type number and whenever possible mention ranges or other significant specifications as protection against misunderstanding.

Be sure to include orders for any accessories desjred or for calibrations which must be made before shipment.

SHIPPING INSTRUCTIONS

Unless specific instructions accompany the order we shall use our best judgment as to the method of shipment.

All pricesare F.O.B. Cambridge, Massachusetts. There is no domestic packing charge and no charge for shipping cases.

TERMS

Net 30 days. Unless credit has already been established we make all shipments C.O.D.

When cash accompanies the order, we pay transportation clarges to any point in the continental United States (except Alaska).

REMITIANCES

Should be made payable at par in Boston or New York funds.

QUANTITY DISCOUNTS

When 10 or more identical items are ordered at the same time for a single shipment, the following quantity discounts are allowed:

10-19	5 per cent
$20-99$	10 per cent
100 or more	Special discounts

The above discounts also apply to quantities of packages where the unit of sale is a package of small parts.

NO TRADE OR EDUCATIONAL DISCOUNTS

Our prices are made on a direct-toconsumer basis which permits of no discounts except cash and quantity discounts.

PRICE CHANGES

All prices are subject to change without.
notice. Formal quotations remain open lor 30 days.

SPECIFICATIONS

We reserve the right to change specifications at any time without incurring any obligation to incorporate new features in instruments previously sold.

TAXES

Since the apparatus and parts furnished by us are not subject to the manufacturers' excise lax imposed on certain radio items under Section 607 of Title IV of the Revenue Aet of 1932 , no tax has been included in the price. If any of these component parts are used by a "manufacturer, producer, or importer" and in a taxable mamner, as defined in this Revenue Act, such "manufacturer, producer, or importer" must see that the requisite tax is paid on them. Tubes on which a tax is payable have had this tax paid and the prices given include this tax. Prices are subject to such additions for state or loeal taxes as we are now or may be required to collect, and to revision as to any sales or excise taxes which may hereafter be imposed and which must be included in the list price.

SHIPMENTS TO GENERAL RADIO
When returning instruments for repair, recalibration, or for any other reason, please ask our Service Department for shipping instructions and our ueturafo apparatus tags.

REPAIR PARTS
When ordering repair parts, be sure to describe carefully the parts required and give the type number and serial number from the panel of the instrument.

TELEGRAPH AND CABLE ORDERS

We lave direct telegraph printer connections with Postal and Western Union for the prompt handling of messages.

Use Bentley's code and the code words
accompanying each calalog description. Our cable address is granaddo boston.

SALES AGENCIES

With the exception ol a stock of parts for local distribution in New York City carried by Leeds Radio Company of 45 Vesey Street, our instruments are not sold by dealers or brokers.

NEW YORK ENGINEERING OFFICE

An engineering office is maintained at 90 West Street, New York City, where technical information regarding our apparatus may be obtained by those who find it more convenient to telephone or call at that office than at Cambridge. No stock is held at the New York office.

Sales offices are maintained on the Pacific Coast at 274 Bramman Strect, San Francisco, and at 555 South Flower Streel, Los Angeles. Small stocks are maintained at these locations.

Although our domestic sales are made on a direct-to-the-consumer basis, we have arranged with numerous forcign agents for the distribution of our productsoutside of the Uniled States.

WARRANTY

We warrant each new instrmment manufactured and/or sold by us to be free from defects in material, workmanship, and design; our obligation umder this warranty being limited to repairing or replacing any instrument or part thereof which shall, within one vear after delivery to the original purchaser, prove by our examination to be thiss defective.

OTHER GENERAL RADIO PUBLICATIONS

In addition to this catalog we publish a monthly magazine, the General Radio Fxperimenter, for free distribution : anong interested persons. It contains technical and semi-technical enginecring articles which are contributed, for the most part, by our engincering staff. To be placed on the mailing list, simply address a request to us containing your name, mailing address, and business affliation.

PATENTS

Many of our productsare manufactured and sold under United States Letters Patent owned by the General Radio Company or under license grants from other companies. To simplify the listing of these patents they are given here in a single list and relerred to at each instrument only by appropriate reference number.

1. Vaculum-tube amplifier devices, electrical wase filters, and vacum-tube oscillators are liecnsed by Electrical Researeh Products, Inc., under all United States Letters Patent owned or controlled by American Telephone and Telegraph Company, or Western Electric Company, Inc., and any or all other t'nited States patents witll respect to which Electrical Rescarch Products, Inc., has the right to grant a license, solely for utilization in research, investigation, mcasurement, testing, instruction, and development work in pure and applied science, including engincering and industrial fields.
2. Patent $1,871,886$.
3. Patent $1,540,99.5$.
4. Patent $1,707,591$.
5. Patent $1,901,343$.
6. Patent $1,901,344$.
7. Patent 1,914,315.
8. Patent $1,967,18.5$.
9. Patent applied for.
10. Patent $1,555,778$.
11. Patent $2,009,013$.
12. Licensed under all patents and patent applications of Dr. G. W. Picree pertaiming to piczo-clectric crystals and their associated circuits.
13. Licensed under Mazeltine and Latour Designs ard Patents for scientific measurement and test purposes only.
14. Patents $1,931,530 ; 1,943,308 ; 1,95.5,739$.
15. Licensed under desigus and patent applications of Dr. Harold E. Edgerton and Mr. Kenneth Germeshausen.
16. Patent $1,990,1.53$ and other patents, covering clectrical discharge devices and circuits with which said devices may be used, owned by the General Electric Company or under which it may grant licenses.
17. Patents $1,718,146$ and $1,741,675$.
18. Pratcut $1,985,4+7$.
19. Patent $1,967,18 \pm$.
20. Patent $2,012,497$.
21. Patent 2,012,291.
22. Patent $1,999,869$.
23. Licensed under designs and patent applications of Barss, Kinobel, and Young, Inc.
24. Licensed under designs and patent applications of Dr. lirederick V. Hunt.
25. Patent No. 1,983,657.

INDUSTRIAL DEVICES

0949989990
STROBOSCOPES
COLOR
COMPARATOR
SOUND LEVEL
METER
VARIAC

TYPE 548-B EDGERTON STROBOSCOPE

Tyre 54S-13 Edgerton Strohoscope (power supply and lamp)
Vision, the ability to see what is happening, is a proverbial preliminary to finding a solution for diffienlties. Most modern mechanical operations have not been subject to this fandamental method of analysis because they take place at speeds too high for the eye to follow.

The stroboscope, however, depending upon the principles of intermittent viewing and retention of vision, makes this possible. If a rotating object is instantaneously viewed at only one point in its motion, the optical impression is of a stationary object. If the viewing point of successive observations progresses smoothly, the optical inpression is that of an object rotating slowly at the rate of progression of the vicwing point.

The Ldgerton Stroboscope greatly simplifies the mechanies of the stroboscopic principle. Instead of using rotating dises, shutters, or other mechanical means, intermittent viewing is accomplished by flashing a light of high intensity and very brief duration. This stroboscope consists of a lamp, power source, and means for accurately timing the flash. The flash is of sufficient intensity to override moderate backgromd ilhumination, and its duration is so bricf that sharply defined views of objects noving at high linear velocitics are obtained.

The stroboscope may be used as a light source in the photography of rapidly moving mechanisms. In this application it is used with a shutterless camera (such as the Type 651-A-E Assembly) in which the exposure is obtained by means of the brilliant flash instead of a shulter.

While the normal means for controlling the flash rate is the Typu 5 . 69 -B SynchronousMotor Contactor, the rate can also be controlled (1) by closing any pair of electrical contacts, (2) by the 60 -cycle supply mains (sixty flashes per second), or (3) by any external source of alternating current capable of maintaining 100 volts across 5000 ohms.

All parts of the stroboscope equipment except the lamp and tripping contacts are built into the metal cabinet which constitutes the power-supply unit. The cover stores the detachable mercury-vapor lamp and a Type $549-\mathrm{B}$ Synchronous-Motor VariableSpeed Contactor which is optional equipment and is not included in the price of the instrument.

THE STROBOSCOPE STOPS MOTION

Two views of the same oscillating spring BY ORDINARY LIGHT

SPECIFICATIONS

Flashing Range: From 0 to 15,000 tashes per minute for fundamental synchronism.
Lamp: U-shaped mercury-vapor larup mounted in a bakelite protective housing which may be stoond upright or held in the operator's haid.
lilumination: The light intensity will permit good visual observations in a semi-darkened room with the lamp several feet from the ohject.
Tubes: One FG-17 thyralron aud two 89-type rectifier tubes are supplied wilh the instrument.
Power Supply: 115 wolts, $50-60$ eycles.
Power Consumption: 0.3 kw , maxitnum.
Mounting: The power supply is housed in a metal cabinet having a detachable cover in which the lamp, motor-driven contactor, and cabies may be stored.

Dimensions: (Lengeth) $23 \times$ (width) $71 / 2 \times$ (height) $161 / 2$ inches, over-all, with cover closed. Dimensions of lamp housing, (height) $12 \times$ (dinmeter) 4 inches. Net Weight: 56 pounds, including lamp but not the Tyre 549-B Synchronous-Motor Contactor.

-Inclades lamp assembly. Hand contactor or gynclaronous-motor conlactor mast be ardered separately.

TUBE REPLACEMENTS

Type	Description	Code Word	Price
550-P1	Lamp	Matok	$\$ 15.00$
FG-17	Thyratron		10.00

Patent NOTICE. See Notes 15 and 16 , page v.

TYPE 621 EDGERTON POWER STROBOSCOPES

The power stroboscope supplies much greater illumination than does the True 548 instrument. It is intended for visual use where a larger field must be illuminated or where very high flashing speeds are necessary, and for taking ligh speed motion pictures.

In conjunction with the Type 651-A-M Camera Assembly, motion pictures can be taken at a maximum speed of 9000 per second, permitting the examination of the motion of mechanical systems not previously observable by any method. Specifications and prices will gladly be sent on request.

TYPE 631-A STROBOTAC

The General Radio Strobotac is a small portable stroboscope calibrated to read directly in revolutions per minute. Although designed primarily for speed measurement, it can also be used for the stroboscopic observation of rapidly-moving mechanisms.

Illumination is furnished by a neon lamp mounted in a reflector which focuses the light at a distance of approximately eight inches from the instrument. The flashing speed is adjusted by means of an illuminated dial which is calibrated between 600 and 14,400 r.p.m. By using multiple synchronisms, speeds up to 72,000 r.p.m. can be measured. Between 900 and 14,400 r.p.m., the accuracy of the scale is 2 per cent. The Strobotac operates from a 115 -volt, 60 -eycle, a-c line and provision is made for standardizing the scale
 in terms of the a-e line frequeney. If desired, the flashing speed can be controlled by an external contactor or by the a-c line frequency.

For routine plant maintenance work and speed measurement, as well as for laboratory investigation on small areas, the Strobotac will be found entirely satisfactory.

It is ideally suited for rapidly adjusting the speeds of a number of machines intended to operate at the same speed, as, for instance, textile spindles. Because of ils small size and light weight, it can be used to observe the operation of mechanisms which cannot be reached by larger instruments.

All controls are grouped on the right-hand side of the instrument atad are easily accessible when the Strobotac is held in the left hand. The eatire assembly weighs only 12 pounds.

SPECIFICATIONS

Range: 600 to 14,400 r.p.m. Fundamental range; speeds up to 79,000 r.p.m. can be measured by using multiple synchronisms.
Accuracy: $\pm 2 \%$ between 900 and 14,400 r.p.m.
Power Supply: 115 volts, 60 eytles.
Power Consumption: 25 watis.

Vacuum Tubes: One Type 631-Pi Stroluatron, one so-type and cne 58 -type.
Mounting: Hetal gase will carrying handle.
Dimensions: (Widti) $61 / 2 \times$ (Iength) $s \times$ (heigl।) 10 inches, over-all.
Net Weight: 12 pronnds.

Type		tode Morl	Price
$631 . \mathrm{A}$		Braio	\$95.00
$631 . \mathrm{P} 1$	Replacement Strobotron.		6.00

[^0]
TYPE 549 CONTACTORS

For Use With Edgerton Stroboscope

Two commatator-type contactors are available for controlling the flashing rate of an Edgerton Stroboscope. One is a motor-driven device having the flashing rate adjustable over a wide range. Tlie other is for pressing against the end of a shaft, tarhometer-fashion, It makes one flash for every revolution of the shalt.

The synchronous-motor contactor, Tyre $549-\mathrm{B}$, when driven from a 110 -volt, (60-cycle line, is capable of flashing an Edgerton Stroboscope at any rate between 500 and 3000 flashes per minute. The contactor is driven by an $1800-\mathrm{r} . \mathrm{p} . \mathrm{m}$. selfstarting synchronous motor, Flashing rate adjustment is made by turning the knurlest hande which changes the ratio of the friction-drive mechanism. A calibrated scale gives the flashing rate in flashes per minute. Phase can be aljusted independently at the contactor head.

It should be remembered that the contactor can be used for speed measurements as high as 30,000 r.p.m. If one flash occurs for every second turn of the observed phenomenon, the effective range becomes 1000 to 6000 r.p.m.; if one flash occurs for every third turn, the effiective range becomes 1500 to $9000 \mathrm{r} . \mathrm{p} . \mathrm{m}$; ete.

By removing the contactor head and substituting a rubber driving tip which is supplied, a hand contactor equivalent to Type 549-P2 is obtained.

The uncalibrated head, fitted with rubber tip so that it can be driven from a rotating shaft, is available separately as the Type 549-P2 Hand Contactor. Phase can be saried by rotating the adjustahle head.

Tres 0 -49-PE Hand Contactor

SPECIFICATIONS (Type 549-B)

Range of Flashing Rate: 200 to 3000 flashes per minute. The contactor may be used for ohserving and measuring speeds up to at least 30,000 r.p.m. A calibrated scale (500 to 3000 r.p.m.) is provided.

Cords: Connecting cords are furnished.
Controls: One knob for adjusting speetl and the morable contactor bead for adjusting the phase. lack is provided with a locking arrangement to hold it firmly in the desired position.

ThP: 549-13 Synchronous-Motor Contacter
Frequency Stability: Determined by slability of the 60-cycle supply mains.
Dimensions: (lenglh) $93 / 4 \times$ (width) $63 / 4 \times$ (leight) $43 / 3$ inches, over-all.
Net Weight: 105/8 pounds.

Ttrpe		Code T ord	Price
$\begin{aligned} & 549-B \\ & 549-P 2 \end{aligned}$	Motor-driven Contactor Hand Contactor	$\begin{aligned} & \text { Macaw } \\ & \text { Madam } \end{aligned}$	$\begin{array}{r} \$ 70.00 \\ 30.00 \end{array}$

TYPE 725-A COLOR COMPARATOR

The General Radio Color Comparator is an instrument for comparing, in terms of spectrophotometric reflection, the color of opaque or semi-opaque objects. Jt can also be used to measure the opacily and trilliance of papers and similar materiats. It can be used for comparing or matehing dyed, printed, or painted samples. It is an extremely useful instrument for the textile paper, paint, and similar industries. It is simple, ensy, and rapid to operate, giving positive and reliable results. The response approximates that of the loman eye whiels adds considerably to its usefulness for those who are accustomed to matching colors by eye.

Since the color comparator operates mbirely on the light. reffected from the sample, best results are obtained on
 samplesof relatively high reflecting power.

Because of its small size and portability it can be used directly in the plant where it is necessary to match the colors of material in process and provides, for this type of work, laboratory accuracy which has not hitherto been available.

The Type 72,5-A Color Comparator consists essentially of: (1) a light source, (2) three color filters dividing the visible spectrum into three overlapping ranges, (3) a photo-electric cell, (4) a meter for indicating tae degree of reflection from the sample. An infra-red filter is used to eliminate errors due to infra-red light produced in the light souree. The three fillers are selected by aceans of a knob which is turned to bring into position the filter desired. The instrument is standardized in lems of a white Carrara glass sample whenever used.

SPECIFICATIONS

Spectrophotometric Range: The entire visible spectrum is covered by meatus of three color filters, the spectrophotometric bands of which atre spaced at approximately $100 \mathrm{~m} \mu$ intervals in the visible spectrum. The red filter is centered at approximately (60) m μ, the green at $550 \mathrm{~m} \mu$, and the blue at $450 \mathrm{~m} \mu$.
Controls: Power supply on-ory switeh; filter selector control; standardizing adjustments.
Meters: Micro-abumeter for indiating degree of reflection.

Power Supply: 1is-voll, fo-cycle, ane line 1 voltage regulator is included for holding the illumination to a constant velue. Adequate fuse protection is provided. The total wer consumption is 75 watts.
Mounting: The entire instrament is mounted in a black metal cabinet of rugged construction and durable finish. All controls and meters are mounted on a sloping panel at the front of the instrument.
Dimensions: (Width) t\& \times (length) $16 \times$ (height) 12 inches, over-all. Net Weight: 40 pounds.

TYPE 759-A SOUND LEVEL METER

This instrument was designed to meet the demand for an inexpensive sound level meter complying with the tentative standards of the American Standards Association, the American Institute of Electrical Engineers, and the Acoustical Society of America. It incorporates several features previously found only in more expensive and cumbersome instruments and is suitable for practically all types of commercial sound level measurcments. Among the features of the new noise meter are the following:

1. A non-directional crystal microphone which responds satisfactorily over a wide range of frequencies, including the high frequencies which make up "hissing" and "swishing" sounds.
2. Unusual sensitivity extending to 24 decibels above a zero reference level of 10^{-16} watts per square centimeter.
3. Three scparate weighting networks for adjusting the frequency response characteristics, consisting of a low level network, a high level network, and a network giving a substantially flat over-all response.
4. No rheostats or other battery adjustments.
5. Unusually light weight and small size.
6. Special tube suspension, providing a freedom from microphonic noises.
7. No inductance coils or transformers whatsoever are used in the instrument, thus eliminating error due to magnetic pickup.

SPECIFICAIIONS

Sound Level Range: Calibrated in decibels from $+24 \mathrm{db} \mathrm{lo}+130 \mathrm{db}$ above a reference level of 10^{-16} watts per square ecnlimeter. (This corresponds to it range of $+\mathbf{1 7}$ to +123 dh when referred to the tuerage threshold of hearing [0.45 millibars] as was used in some carlier model meters.)
Frequency Characteristics: The frequency characteristic of the sound level meter is adjustable to follow three different curves. The first and second of these are, respectively, the 40 and 70 db equallouclness contours modified by the differences letwenn random and normal free-field thresholds in accordance wilh the tentative standard proposed by the American Standards Association. These two response curves are used, respectively, when measuring sounds of low and high intensity. The third frequency response characteristic gives a substintially equal response to all frequencies within Hte range of the instrument. This characteristic is used when measuring extremely high sound tevels or When using the instrument with an analyzer such as the Gencral Radio Type 636-A Wave Analyzer.
Microphone: A non-rirectional piezo-electric mierophone is strpplierd with the sound level meter. The microphone mounts directly on a folding bracket on the top of the instrment and folds down out of the way when not in use. The microphne may also be removed from the bracket and used on an extension corl. The microphone is of the sound cell type, thus climinating the irregularities of response and the variable characteristics frequently encountered in diaphragm-type piczo-electric microphones,

Circuit: The amplifier consists of four stages of resistance-rapacitance-coupled amplification using pentode tubes followed by an output stage arranged to match the especially-designed rectifier-type meter. This combination provides a high dedree of stability and minimizes clange in sensitivity resulting from variations in battery voltage. The twhes are all standard types and readily available. A hallast tube is provided for maintaining constant filament current.

Attenuators: A $10-\mathrm{db}$-per-step at tenuator precedes the third stage of amplification and provides control of the instrument up to 90 db by means of a single knob. For ineasurements of higher sound
levels an additional 40 -dil attemator is provided. This atlenuator is directly on the input of the amplifier. Since the attenuators are at low levels the possibility of errors due to amplifier non-linearity is eliminated.
Meter: The indicating meter hats a scale which is approximately linear in decibels and which covers a range of 16 db , thus providing satisfactory and accurate interpolation between the steps of the attemuator. The ballistic characteristies of the meler mateb closely those of the human ear and agrec with the tentative stimdards specified by the American Standards Association.
Telephones: A jack is provided on the panel for plugging in a pair of head telephones in order to listen to the sounds being measured.
Vibration Pickup: If desired, a piezo-electric vibration pickup may be used in place of the microphone.
Tubes: Five 1A4-type tubes and one 1D1-type tube are required. A complete set of tubes is supplicd with the instrument.
Batteries: The batterjes required are two Burgess No. 4 PA (little 6's), or equivalent, two Burgess No. Z 30 P 4s-volt B batterics, or equivalent, und one Burgess No. FQ13P 3 -voll batlery, or cquivalent. A compartment is proviled in the case of the sound level meler for holding all batterjes and connections are automatically made to the batteries when the cover of this eompartment is elosed. A set of batteries is included in the price of the instrument.

Case: Tlic meter is buill into a shieldecl carrsing aise of airplane luggage construction, covered with a durable black waterproof material and equipped with chromium-plated corners, elasps, cte. This case has been designed to combine durability with light seight and goon appearance. When operating the sound level meter, the cover is ordinarily removed. An additional handle is provided on the panel of the instrment for convenience in moving it athout while it is in operation.
Dimensions: The over-all dimensions are approsimately (height) $111 / 2 \times$ (length) $13 \frac{1}{2} \times$ (width) $91 / 2$ inches.
Net Weight: $831 / 2$ pounds, with balteries; $171 / 2$ poumds, without batteries.

The Variac is an adjustable transformer that delivers any voltage between zero and line voltage with as smooth aud unintermpted control as that obtainable from any theostat. (On some models any voltage between zero and 135 volts can be obtained from the $11 \tilde{\delta}$-volt, 60 -cycle line.)

The applications of the Variac to industrial control and to experimental problems in the laboratory are literally numberless. In general, it can be stated that the Variac is the ideal a-c voltage control device because of its high efficiency, low heat dissipation, and good voltage regulation. It has many advantages over the usual rheostat or potentiometer. The output voltage is essentially independent of load. Voltages in the vicinity of zero are obtainable, and it is possible to increase the voltage and thas provide a means of compensating for low line voltage.

This combination of qualities has been obtained by means of design features of considerable interest. The Variac in ils simplest form consists of a laminated iron core built up of torodal punchings. A single-layer winding traversed by a moving contact provides bolh the transformer effect and a convenient means of voltage adjustment. Since each hurn of the winding can be reached by the contact, a contimous adjustment of voltage is obtained. The transformers are designied to have about 0.2 to 0.9 volt between turns. The carbon contact limits the current in the short-circuited turn so that no undue heating results.

Among the uses are voltage control for clectrical testing, calibration and measurement work, heat control on electric furnaces, soldering irons, ete., motor speed control and illumination control in theatres, photographie studios, and dark rooms.

[^1]
SPECIFICATIONS

Lodd Rating: The value of "Joad Rating" specilied in the price list for each model is the full-voltage volt-ampere rating of a constant-imperlance load. In other words, Ty pas $100-\mathrm{K}$ will control at any sel ting a load rated q kva at 11.5 volts.

Curtent: The "Raled Current" specitied in the price list can be drawn safely al any point in the outputvoltage range, butat some settings this rated value of load current may he exceederl. This increased current is the "Maximum Current" given in the price list.

Since the Variac is an anto-transformer, maximum loss (which determines the rating) oceurs at one-half line voltage. In the vicinity of full-line voltage, however, there is little transformer action, and the allowable current is limited only by heating in the brush, which permits the "Maximum Current" rating at this point.

Consequently a Variac can handle, for any sething, a constant-inupedance load which draws at full voltage a current no greater than the specified "Maxinum Current."

Calibration: Dials giving a vollage calibration accurate to $\pm 2 \%$ when the line voltage lias its rated value are furnished on TYpe 200 Variacs. Typm 100 is supplied with a lo0-division dial plate which indicates percentage of tine voltage.
Knob: Trpe 100 has a landwheel with a fixed chat plate.

Typr 200 models have dials permanently attached to Type 637 Knohs.

Yoltage incrpases witl clockwise rotation of the control wheel on Typs 100. On Tyre 200 Jie voltage increases with counterelockwise rotation of the dial when arranged for table mountiug.
Direction of rotation for increasing voltage may be reversed by a clange of connections on Tyre 200 but nol on Type 100.

Terminals; Type $200-\mathrm{CM}$ and Typh $200-\mathrm{CMII}$ are furnighed complete with attachmesl cord and phug for the iuput connection to the mains, an on-orf
switeh, and a standard plug receptacle for the output circuit.
TYpes 100, $200-13$, $900-\mathrm{CL}$, and $200-\mathrm{CUH}$ have threaded terminal sturls with nuts and soldering lugs.
Mounting: All models are readily converted from the table mounting illustrated to back-of-panel mounting. Tyre 100 models can be mounted in cascade for operation by a single shaft. See accompanying drawing for mounting dimensions.
Type 200-CM and Type 200-CMLE are supplied with protecting cases. All other models are supplied wilhout a cuse.
Dimensions: Seesletch. Over-all height: Type 100-K, 7/8; Type 100-1, 8; Type 200-B, 4; and Trpes $200-\mathrm{C}$ and $200-\mathrm{CII}, 51 / 2$ inches.
Net Weight: Type 100-k, $205 / 8$ pounds; Type 100-L, 893 pounds; Type $900-\mathrm{I}, 3,83$ pounds; 'TYpes $900-\mathrm{CM}$ and $200-\mathrm{CMH}, 10$ pounds; and TyPEs $200-\mathrm{CU}$ amil 200 -CUH, 9 pounds.

Type	Load Rating	Primary Voltage	Current		$\begin{aligned} & \text { Output } \\ & \text { Voltage } \end{aligned}$	Code Trord	Price
			Iuted	Maximum			
100-K	2 kva	115 v	15 a	17.5 a	(0-115 v	bLamy	\$40.00
100-L	2 kva	230 v	8 a	9 a	$0-230 \mathrm{y}$	beamb	40.00
100-L		115 v	4 a	9a			
200-B	170 va	115 v	1 a	1.5 :	$0-1.35 \mathrm{v}$	BALSA	10.00
200.CM	850 va	115 v	5 a	7.5 a	$0-13.5 \mathrm{v}$	Balmy	17.50
200-CU	850 ya	115 v	5 :	7.5 a	$0-135 \mathrm{v}$	baker	14.50
200-CMH	580 va	230 r	1.5 a	2.5 a	$0-270 \mathrm{v}$	bairy	21.50
200-CMH		145 v	0.5 a	2.5 a	$0-870 \mathrm{y}$		
200-CUH	580 va	230 v	1.5 a	2.5a	$0-270 \mathrm{v}$	Bacter	18.50
$200-\mathrm{CUH}$		115 v	0.5 a	9.5 a	0.270 v		

PATENT NO'ICE. See Nole 11, page v.

VARIAC TRANSFORMERS

These recently developed Variac Transformers, intended for use where only small voltage variations are desired, are similar to the toroidal Variac in performance, but are radically different in design.

The new Variac Transformers are built on rectangular cores with windings in several layers on the two legs of the fore. The top layers of wire are exposed to two sliding carbon contacts. These contacts are directly connected, eliminating flexible leads. By means of a steel tape, a 320 -degree rotation of the control knob drives the contacts along the entire length of the windings. The windings beneath the top layer are conventional transformer coils and can be used for a number of purposes.

Four standard models are listed below. A number of different voltage-current combinations can be supplied on these cores. For good efficiency the design limitations on the special transformers are 10 amperes and a maximum voltage variation of 30 volts for the Type 70 core and 20 amperes and 60 volts variation for the Type 80 core. Witlin these limits special transformers can be supplied promptly and economically.

SPECIFICATIONS

Type	Line	Volts	Output	Volts	Max. Current
70-A	Constant	115	Adjustable	$0-10$	0 a
70-B	Fluctuating	$100-125$	Constant	115	2 a
80-A	Constant	115	Adjustable	$0-10$	90 a
80-B	Fluctuating	$90-180$	Constant	115	7.5 a

Load Rating: Type 70 [urnishes 50 watts and Type 80 supplies 250 watts of variable power.

Current: Sce table above.
No-Load Loss: Approximately 5 watts for Type 70; 10 watte for Type 80.

Terminals: Threaded terminal studs with soldering lugs.
Dimensions: Type 70, (length) $48 / 4 \times$ (width) $38 / 8 \times$ (height) \& inches; TYpe 80, (length) $81 / 2 \times$ (width) $41 / 4 \times$ (height) $53 / 2$ inches, over-all.
Net Weight: Type 70, $41 / 4$ pounds; Type 80, $181 / 4$ pounds.

Type	Cade Word	Priee
70-A	hasis	\$10.00
70-B	Basso	10.00
$80 . \mathrm{A}$	baton	15.00
80-B	batty	15,00

[^2]

TYPE 602 DECADE-RESISTANCE BOX

A convenient assembly of resistance cards in a single cabinel with switches is a necessary laboratory aceessory wherever electrical measurements are made. Such boxes are constantly used in circuits where a wide range of resistance values is required, as laboratory slandards, bridge arms, and dunmy generator and load resistors.

The Type 602 Decade-Resistance Box is an assembly of two or more Type 510 Decade-Resistance Units in a single cabinet. Mechanical and electrical protection of the units is provided by the shielded walnut box and aluminum panel, which completely enclose both units and switch contacts. Two-, threc-, four-, and five-dial decade assemblies are available. Each decade has cleven contact studs and ten resistance umits, so that dials overlap. A detent mechanism assists in setting squarely on the contacts. This permits adjustments to be makle without looking at the dials.

The resistors are adjusted to have their specified values at their own terminals and not at the terminals of the box. The resistance mensured at the box terminals will, therefore, be high by the switch contact and wiring resistance, which amounts to about 0.003 ohm per dial. This method of adjustment has been adopted primarily because no method in which the switch resistance is absorbed in some one unit of a decade can give the correct value of the total resistance for all settings of the varions decales. There are also many types of measurement (voltage-divider and substitution bridge measurements, for example) in which the difference in two settings of a resistance box is significant. This difference is given correctly only when the individual resistors have been adjusted independently of switeh resistance. The wiring also adds a small inductance, about 0.1 microhenry per decade.

The resistance elements have no electrical connection with the shield, which is brought out to a separate terminal on the panel.

All General Radio boxes are equally useful on direct and alternating current and maintain their usefulness for many applications well into the radio-frequency range.

The frequency characteristies of the individual decades will be found under Type, 510 Decade-Resistance Units, page 15. When several decades are assembled in a single box, the box wiring and the capacitanee to shield of the individual cards will, of course, aflect the frequency characteristic. These effects vary with frequency and are generally
greater for the very low and very high resistance decades. They do not appear at andio frequencies, but have an appreciable effect on resistance values at carrier and radio frequencies.

Generally speaking, the 1 -, 10-, and 100 -ohm dials are most satisfactory at high frequencies.

When the boxes are used in tuned circuits, only changes in resistance due to skin effect and, in some high-resistance cards, to effective capacitance need be considered. When the boxes are used as drop wires, the reactance of wiring and cards at ligh frequencies will affect the apparent impedance of the box. Data on these effects will be foand in the specifications under "Frequency Characteristics."

SPECIFICATIONS

Type of Winding: See specificalions for Type 510 Decade-Resistance Umils, page 11.
Accuracy of Adjustment: All cards are adjusted to within 0.1% of the stated value between card terminals, except the 1 -olim curds which are adjusted to within 0.25% and the 0.1 -olum cards which are adjusted to within 1%. Where necessary, add 0.003 ohm for each dial to allow for contact and wiring resistance.

Frequency Characteristies; There is no serions frequency error lelow 50 ke . At higher frequencies the error resulta from changes in resistance and the effect of the reactance in the cards, and from the inductance of the box wiring (about 0.1 н l per dial).

For characteristics of the individual decates, see specificalions for'Them 510 Decade-Resistance Units, page 14.

Maximum Current: Sec specifications for Type 510 Decade-Resistance Units, pure 14.
Terminals: Jack-top binding posts set on General Rudio standard $3 / 4$-inch spacing for resistance con-

Typical internal construclion of a Type 602 Decade-Resistance Box
neclions. There is an extra post at the conner of the panel for connections to the shield.
Mounting: A copper-lined walnut cabinet, with aluminum panel, coniplelely encloses switches and resistance units. The pancl finish is black crackle lacquer.
Dimensions: Panel length depends on the number of dials (see price list), being $7 / 4$ for 2 -dial, $10 \mathrm{~g} / \mathrm{g}$ for s -dial, 13 for 4 -dial, and $155 / 8$ inches for $\overline{5}$-diat boxes: Panel width, 5 inches. Over-all height, 5 inches.
Net Weight: $31 / 4$ for 2 -dial, $41 / 4$ for 3-dial, 5 for 4 -dial, and $6 \frac{1}{4}$ pounds for 5 -dial boxes.

Type	Resistance	No. of Dials	Code Word	Price
602.D	11 ohms, total, in steps of 0.1 ohm	2	decoy	\$ 85.00
602-E	110 ohms, total, in steps of 1 ohm	2	DECHT	25.00
602-F	111 ohms, total, in steps of 0.1 ohm	3	delta	35.00
602-G	1110 ohms, total, in steps of 1 ohm	8	DIGIT	35.00
602-K	1111 ohms, total, in steps of 0.1 ohm	4	Defer	45.00
602.J	11,110 ohms, total, in steps of 1 ohm	4	degit	50.00
602-N	11,111 ohms, totel, in steps of 0.1 ohm	5	DEmon	62.00
$602-\mathrm{M}$	111,110 ohms, total, in steps of 1 ohm	5	DEMST	70.00
602-L	111,100 ohms, total, in steps of 10 ohms	4	preay	58.00

TYPE 510 DECADE-RESISTANCE UNIT

These precision decade resistors are identical with those used in the Type 602 Decade-Resistance Box. They are intended for assembly into either experimental or permanent equipment where only a single decade is needed or where a Type 609 Decade-Resistance Box cammot be conveniently mounted.
Each resistor is carefully adjusted and aged, the constraction heing such that there is no serions error at frequencies ats high is 50 ke . Operation is equally satisfitstory in d-e circnits, since manganion is used for all mits except 10,000 -ohm cards. Qtadrople-leaf switches ruming over large contacts insure a low and constant contact resistance.
Fach decade is enclosed in an aluminum shield, and a knob and an etrhed-metak dial plate are supplied. The unit is also availatole, complete as illustrated with shield, shield cover, blank dial phate, and switch stops, but without resistors, as the TyיE 510-1'3 Switch.
A discossion of the frequency characteristics of these units is given in the General Radio Expermenter, Vol. VI, No. 9, February, 1932.

SPECIFICATIONS

Accuracy of Adjustment: Resislors are adjusted to he aceurate at eard terminals within the toleraness given in Table I below.

Maximum Current; See Table I helow Type of Winding: See Tuble I below.

TABLE I

Type	Rexistonce per Step		Aconracy	Ture of Windtug	Marimam Current		
			200. Rase		$40^{\circ} \mathrm{C}$. Mise		
510-A	0.1			$\pm 1.0 \%$	Bitiliar	1 a	1.58
510-B		8	$\pm 0.25 \%$	Ayrton-P'eriy	600 ma	1 a	
510-C	10	9	$\pm 0.1 \%$	Ayrton-Perty	170 ma	250 max	
510.D	100	Q	$\pm 1.1 \%$	Ayrlon-Perry	30 ma	80 ma	
510-E	1000	Ω	$\pm 0.1 \%$	Unifilar on Mica	15 ma	23 1143	
510-F	10,000	Ω	$\pm 0.1 \%$	Unifiar on Mica	5 ma	7 ma	

Frequency Characteristics: There is no serious crror below 50 ke . At higher frequencies the crror results irom skin effect and reactance in the cards and lends.

Table II lists the change in resistance for each decade at maximutu selling as a function of frequency.
Table III lists the change in impedance for each decade al maximum setling as al funclion of fre-
 ftueney. These values indirate the eror ocenring

TABLE II
Percentage Error in Ressistance
for Maxinam Setting of Each Decade as a Function of Frequency

Decade		Frequency in for					
	50	100	200	500	1000	2000	5000
0.7-ahm stels	0	0.1\%	0.2\%	1.5\%	5%	--	-
1 -uhmesters	11	0	0.1\%	0.3\%	1%	1\%	-
10 -ohins steps	0	0	0	0.1\%	0.5%	2 \%	11\%
100 -ohen steps	0	0	0	0.1\%	03\%	0.8\%	4%
1000 -ehm steps	0	-0.1\%	-0.5\%	-3%	-11%	-	-
10,000 -ohm steps	-1%	-5 \%	-	-	-	-	-

'八ABIE III
Clange in Impedance (as a percentage of nominal resistance) for Maximm Sedting of Euch Derade as a Function of Frequency

Deruile	Frequenty in ko						
	50	100	? 20	500	1000	2000	5000
0.1 -ohm sleps	0.2\%	0.7\%	2\%	-	-	-	-
1 -ohtu steps	0.1\%	0.2\%	1%	5%	-	-	-
10 -olur sleps	0	0	0.1\%	0.2\%	2%	-	-
100 -ohmosteps	0	0	0	0.1\%	0.8\%	1\%	5\%
10100 -olum steps	0	-0.1%	-0.5%	-2%	-6\%	-	-
10,090 -ahme steps	-2\%	-10\%	-	-	-	-	-

when the decade is used as a series circuit clement or'as a voltage diviter. When shmmed across a tuned circuit, the reactance is tumed ont and the remaining error is only that owing to skin effect.
Switches: Quadruple-keal, phosphor-bronere switches bear on conlact studs $8 / 8$ inel in diancter. Switch brushes are bent so as not to be tangent to the are of travel, thus avoiding cutting. A am-type detent is provided. There are eleven contact points (0 to 10 inclusive). The switch resistance is approximately $0.00 z$ olums.
Temperature Coefficient: The temperature cuefficient of resistance is less l ban $\pm 0.002 \%$ per ingree C. at room tenperatures.

Resistance Wire; Manganin is used on all decades except the $10,000-$ ohm mits, which are wound with a combination of Nichrome and Ohmax in suitable proportions lo give approximately zero lemperature evefficient.

Terminals: Soldering lugs are provided.
Mounting: Each decade is complete with dial plate and knob and can be mounted on any panel bet ween $1 / 4$ incl and $3 / 8$ inch in thickness.

Dimensions: See sketch; shatt diameter is $3 / 8$ inch.
Net Weight: Typl 510 Dhits, 11 ounces; Type: 5IO-P3, $91 / 2$ ounces.

Type	Remistance		Conle Wrord	Price
	Total	Per Step		
510-A	18	0.18	elate	58.50
510-B	10Ω	1Ω	mader	8.50
$510 . C$	100Ω	10 !	ellgy	8.50
510-D	$1000 \div$	100 :	Elutow	8.50
510-E	10,000 ?	1000	bilect	12.00
510-F	100,000 2	10,000 Ω	mavas	14.00
510-P3 Switeh			Ex yoi	5.00

TYPE 670 COMPENSATED DECADE RESISTOR

The Type 670 Compensated Decade Resistor is a decade-resistance box having completely non-reactive resistance increments.

While the Typr 602 Decade-Resistance Boxes have a sufficiently low reactance to be serviceable for many applications even at radio frequencies, no type of resistance box can be made entirely non-reactive. In methods of measurement requiring a variable non-reactive resistance, a pure resistance increment is sought rather than a pure resistance, that is, a residual constant inductance can be taken care of through a preliminary balance.

The Type 670 Compensated Decade Resistors are designed to take advantage of this fact. A double card system is used, and the switch is so arranged that a copper coil of proper magnitude to keep the inductance constant is substituted when a resistance coil is switched out of circuit. In this way the resistance can be changed without producing any change in circuit inductance.

The constant residual inductance produced by this method is of the same magnitude as the inductance of an uncompensated box with all decades at maximum setting. The boxes are intended for use either in substitution methods, where the preliminary balance of the circuit will take care of the residual inductance, or in briclge circuits where the residual inductance can be balanced by a compensating inductance in the opposite bridge arm.

The value of these boxes is best demonstrated by the fact that it was this development which made possible the Type 516-C Radio-Frequency Bridge and the Type 667 -A Inductance Bridge, both of which are described elsewhere in this catalog, and both of which require pure resistance increments in the bridge arms.

SPECIFICATIONS

Type of Winding: The 10 -ohm and 1 -olln steps are Ayrton-Perry-wound resistance cards. The 0.1 -ohm steps are bifilar units. The decades are compensated by copper coils and a substitution switching arrangement which keep the box jaduclance constunt at all settings as shown on page 17.

The construction of the continuously-adjustable compensated slide wire is illustrated on page 18.
Accuracy of Adjustment: Resistance increments are correct to within 0.1% for the 10 -ohm cards, $0.2 .5 \%$ for the 1 -uhm cards, and 1% for the 0.1 -ohm decade steps and the 1-ohm slide wire. The inductance is constant within $0.05 \mu \mathrm{~h}$.

Maximum Current; The upper limit of temperature rise is $40^{\circ} \mathrm{C}$. Values of current for $20^{\circ} \mathrm{C}$, and $40^{\circ} \mathrm{C}$. rises are given in Table I.

TABLE I
Current for Temperalure Jise of $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Dccade	$90^{\circ} \mathrm{C}$. Rise	$40^{\circ} \mathrm{C}$. Rive
0.1 -ohm steps	900 ma	1.5 a
1 -ohm steps	300 ma	500 ma
10 -ohm steps	90 ma	160 ma

Switches: Douhle-leaf, phosphor-bronze switches bear on contact studs $1 / 4$ inch in diumeter. Switch brushes are bent so as not to be tangent to the are of travel, thus avoiding cutting. A cam-type detent is provided. There are eleven contact points (0 to 10 inclusive).
Frequency Characteristics: The frequency characteristies of the Tyres 668 Decades used in these boxes are modified by the wiring and the shield of the cabinet. Shunt capacitance effects are negligible because only low values of resistance are used. The skin effect in the resistors will be increased by that in the wiring. For further details, see specifications
for Typa 668 Compensated Decade-Resistunce TYits.
Terminals: Standard 3/4-inch spacing is used on the terminals. A ground post connectel to shield is also provided.
Temperature Coefficient: Less than $\pm 0.002 \%$ per degree C. at room temperature.

Mounting: The dials are mounled on alumintam pancls in copper-lined walnut cabinets.

Dimensions: Panel, (length) $19 \times$ (width) 5 inches. Cabinet, (height) 5 inches, over-all.
Net W/eight: 5 pounds (all types).

Type	Resisfance	Zero Resistaree	Zero Inductance	Code Word	Price
*670-BW	0 to 11 ohms, totol, with slide wire	0.050 ohm	$0.70 \mu \mathrm{~h}$	Ahisid	\$80.00
670.F	0 to 111 ohms, total, in steps of 0.1 ohm	0.045 ohm	$1.05 \mu \mathrm{~h}$	Anyss	65.00
*670-FW	0 to 111 ohms, total, with slide wire	0.085 ohm	$1.05 \mu \mathrm{~h}$	ADOw,	75.00

TYPE 668 COMPENSATED DECADE-RESISTANCE UNIT

Although the inductance of Type 510 Decade-Resistance Units has been reduced to a very small value, it is still large enough to introduce errors in precise capacitance measurements at radio frequencies and inductance measurements at audio frequencies. It is impossible to build an ideal, inductance-free resistor, and the next best thing is a unit in which the inductance is kept constant.

The Type 668 Compensated DecadeResistance Unit is equipped with a double set of switch contacts, by means of which a copper winding is exchanged, step by step, for the resistive turns in order to keep the total inductance independent of the resistance setting. The total inductance of each unit is given in the price list.

The method of mounting is identical with that of the Type 510 DecadeResistance Unit, exeept that no aluminum shield is provided. The three types of this unit, when mounted together or combined with Types 669-A or -R as a resistance box, are available as the Type 670 Compensated Decade Resistors.

SPECIFICATIONS

Type of Winding: Same as for Tyיs 510 Units.
Switch: A double switch, similar in consltuction to the single switel used with 'T'ype s10, is used.

Maximum Current: See specifications for Type 670 Compensited Daxde Resistor, page 16.

Accuracy of Adjustment; For 0.1-olim sleps, 1\%; for 1 -ohm steps, $0.8 \% \%$; for 10 -ohn steps, 0.1%. Where necessary, ath the value of "zero resistance" kiven its the price list. Inductance constant to withim $0.05 \mu \mathrm{~h}$.
Frequency Characteristies: The 'requency characteristies of Type biti Compensated Decade-Resistance Unils are similar to those of Tyre 510 Denade Resistance Cuits, page 15 . Becuuse ten-ohm cards are: the largest used, the effects of slomt cepacitance are
entirefy negligible, and the elatige in resistunce with frequeticy restals altumst entitely from skin eflect.
Skin effect in the eompensating winding is preater than that in the resistanee cards, hence the net change in resistance with frepuency for incmements on the dial is negative. That is, the iterement in resistance belwera one switeh peint and the next higher will be less at high frequencies than at low. This "negalive skin effect" is about -0.8% for the units recade and about -0.6% for the lens decade at one megarycte. The resistance at the decate termithls, however, shows a posilive skin effect
Mounting: A combination dial plate and drilling teuplate are firmished.
Dimensions: Diameler, 31/8 inches; leppth liehind panel, 3 inches, wer-all; shapt diameter, $3 / 8$ inch Net Weight: 10 ounces.

Type	Resintance			$\begin{gathered} \text { Total } \\ \text { T. } \end{gathered}$	Cule IFord	Price
	Torol	Her Step	Zero			
668-A	1Ω	0.1Ω	0.00158	0.15 uh	GAmiti	\$15.00
668-B	10 O	1.08	0.0408	0.5 wh	ganix	15.00
668-C	100Ω	10.0 :	0.0150	0.5 m	galor	15.00

TYPE 669 COMPENSATED SLIDE-WIRE RESISTOR

Tlis unit is a slide wire, compensated for induetance, for use where it is desired to secure a closer adjusiment oi resistance than is possible with a Type 668 Compensated Decade-Resistince Unit.*

[^3]
SPECIFICATIONS

Abstract

Maximum Curent: For 1 -ohbo tunit, 1.6 a; for (t.lolim unit, 5 a Accuracy of Calibration: Each unit is filted with a diad individually engraved at 11 points, giving the slide-wire resistanec to within 1% for the 1 -ohmand 5% for the 0.1 -ohim units. Where necessary, atd the value of "zero resistance" given in the price list. Intuctance constant to within $0.065{ }_{\mu} \mathrm{h}$. Mounting: Interelangeable wilh Tyre (ifs, except for the use of dial and slow-thotion drive. A diat indicator is supp piect. Dimensions: Diameler, $31 / 2$ inches; depth behind paticl, 3 inches, over-ail.

Net Weight: 8 ounces.

Type	Hexistance		$\begin{gathered} \text { Toial } \\ L \end{gathered}$	Code IV ord	Price
	Mar.	Zero			
669.A	1.15 Ω	0.058	$0.15{ }^{\text {chi }}$	gamis	\$25.00
669-R	0.115 a	0.02Ω	$0.15{ }_{\mu} \mathrm{Lh}_{1}$	Gazel	25.00
PaTENT	NOTICE	nc. N	pa		

TYPE 646-A LOGARITHMIC RESISTOR

From this new logarithmic type of resistance box, a large mumber of known values of resistance between 0 and 100.1 megolims are avalable. Obtanable values are distributed in approximately logarithmic sleps over this range, so that the unit can be used to rephace a number of decade-resistance boxes. A decade resistor gives a large number of values in a narrow range; the Trpe 646-A Logarithmic Resistor gives fewer values distributed over a tremendousty wide range.

There are numberless laboratory uses for the Trupe 6f6A Tomarithmie Resistor. It can be used in measuring circuits where a wide range of resistance values must be covered and where, though each vahue used must be accurately known, using, for example, 5000 ohms instead of (6000 ohms would canse no trouble. It can be used for a test load in transformer measurements and, because the switches are bronght out to terminals, it can be used as a logarithmic voltage divider.

SPECIFICATIONS

Range: it to 100.1 megolmas in approximately logerithutie steps.
Accuracy of Adjustment: Individual resistors are adjusied as pollows:

Bet ween 0.1 k 3 and Q ks , 0.1%; hetween is $\mathrm{k} \Omega$ and $1.0 \mathrm{Ms} \Omega, 0.25 \%$; $2 \mathrm{M} \Omega$ to $20 \mathrm{ME} \Omega, 5 \% ; 50 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega \Omega_{1} 10 \%$.
Type of Winding: The construction of the units below the 20,000 -ohm point is similat to Generat Radio stamulard resislance-arad construction Bet ween the 20,000 -alim and the 1 -tuegolim steps IRC wire-wound units are usel, aloove 1 merobm, the units are IAC metarlized type
Frequency Characteristics: The imperlance for alternating currents of any frequency is given approxintetely by considering a caparitance of $90 \mu \mu \mathrm{f}$ with a power factor of tr.O5 to he in parallel with the userl portion of the "megohms" dial. Scond order corrections may be natefor a $q_{\mu \mu}$ ieapaciancelwet ween

Hic high-resistance terminal of" the "megohns" dial and gromend. lor resistaner uses the manserl portion of the "wegotms" dial should he short-circuiled.
Maximum Current: Individual resistors betwern 0.1 ks and $0.5 \mathrm{k} \Omega$ will sately carry 70 ma. Between $1 \mathrm{k} s a$ and $1 \mathrm{M} \Omega$ eadr resistor will dissipate 1 watt. Resistors greater than 1 Mse will dissipate 2 waits. The maximunn volage applied to the box shoulat not extred 000 volls.
Terminals: Sepatrate binting posts are lwought out From cach switch and From one ent of cach group of resistors. A scparate binding post for the shield is also provited.
Mounting: A copper-lined calrinet with an alumianm patel completely encloses both switches and resistors. The paracl fitish is black crackle laceruer.
Dimensions: (Length) $73 / 4 \times$ (${ }^{3}$ lept t_{1}) $5 \times$ (height) 5 inches.
Net Weight: $31 / 4$ pronnds.

Type	Coute Word	Prime
646-A	Awake	\$50.00

TYPES 249, 329-J, and 529-B ATTENUATION BOXES

An attenuation network is a combination of resistance elements so arranged that it introduces a definite and known amount of power loss when put into a circuit between certain specified values of external output and input impedance. These three factors completely specify its performance at all frequencies for which the effects of reactance in the resistors and spurious admittances between them can be considered negligible.

These networks, when constructed with a switching mechanism for changing the amount of attenuation, are called "attenuation boxes" and have long been in common use throughout the communication engineering industries for making all kinds of transmission-efficiency and power-level measurements.

The Typs 249 Attenuation Network, in which the attenuation is varied by means of key switches, is available in both T and balanced-H models. The Type 329, which uses a rotary switch, is supplied only in the balanced-H configuration. Type 529 is an L-type network which maintains constant impedance in one direction only.

Talanced-H-section networks are used when impedances must be matched in both directions and balanced to ground. T-type sections maintain constant impedance in botle tirections, but they arc not balanced to ground. L-type section maintains conslant impedance at the $\mathbf{3 4}$ terminals

SPECIFICATIONS

[^4]Types 249-H and -T each have eight series sections with attenuations of $1,2,3,4,10,20,30$, and 40 db , respectively.
True 529 is a single section of 60 db , variable in steps of 2 db .
Type of Section: T-section, balanced-H-section, and L-section models are available. T- and II-types
prescnt a constant impedance in both directions, but the balanced-H should be used where both sides of the circuit must be balanced to ground. The L-type presents a constant impedance in one direction only. Type of Windings; Ayrton-Perry for the lowresistance elements and mica cards for the highresistance elements.
Terminal Impedance: Boxes in the T- and II-types to operate between 50%-ohm impedances are listed. Boxes for other impedance values can be made on spectinl order. The L-type section is supplied for 6000 ohms only.
Accuracy of Adjustment: Each individual resistor is adjusted to within 0.25% of its correct value, so that the entire box is accurate to within 0.5% at frecuuencies up to at least 50 kc .
Switching: Type 240 has eight key switcles to control the eight network sections.

Type: 329-J has a multiple-blade switch and a positive delent which centers the switch blade on the conlact point at each step.

Types 529 has two blades for cach row of conlacts, but no detent is provided.
Mounting: Types 249-H and 249-T are mounted in copper-lined walnut cabinets, with aluminum pancls finished in black crackte laequer.

The Type 540-13 has a walnut cabinet wilh engraved bakelite panel.
Dimensions: Type, 9.4 : Panel, (length) $16 \times$ (width) 51/4 inches. Cabinet, (depth) 51/4 inches, over-all.
Type 329: Panel, (length) $167 / 8 \times$ (width) $103 / 4$ inches. Cabinet, (depth) 6 inches, over-all.
Type 529: Panel, (length) $8 \times$ (width) 8 inches. Cabinet, (depth) 4 inches, over-all.
Net Weight: Type $249,71 / 8$ pounds; Tupe 320, 12 pounds: Type 529,8 , $/ 8$ pounds.

Type	Attertation Range	Impedance	Type of Section	Code Word	Price
249.H	110 db in steps of 1.0 db	500 olmes	Balanced-H	NETWORKROD	\$120.00
249-T	110 db in steps of 1.0 db	500 ohms	T	nethorktop	100.00
329-J	55 db in steps of 0.5 db	500 ohnus	Balanced-H	TENUTOLPPIG	155.00
529-B	60 db in steps of 2.0 db	6000 ahms	L	AFFIX	38.00

TYPE 654-A DECADE VOLTAGE DIVIDER

This is a precision-type decade voltage divider which will supply exact voltage ratios between 0.001 and 1.000 in steps of 0.001 . The internal input impedance of the instrument remains constant at $\mathbf{1 0 , 0 0 0}$ ohms for all settings of the decade dials.

This instrument may be thought of as a pair of Type 602 Decade-Resistance Boxes connected in series and manipulated so that as resistance is taken out of one box it is added to the olher to maintain the total series resistance constant. This is accomplished for each dial through the use of two Type 510 Decade-Resistance Units operated from the control knob by means of a chain drive.

SPECIFICATIONS

Range: Foltage ratios of 0.001 to 1.000 in steps of 0.001 can be oblained by setting up the desired result on the three switches.
Mounting: Decades are mounted on an aluminum panel finished in black crackle lacquer and enclosed in es walnut cabinet.

Dimensions: Panel, (length) $13 \times$ (width) 7 inches. Cabinet, (depth) $51 / 4$ inches, aver-all.

Net Weight: $81 / 4$ pounds,

Type	Input Impedance	Code Word	Price
654 A	10,000 ohms	ABACK	$\$ 85,00$

TYPE 500 RESISTOR

This is an accurately adjusted resistance card monnted in a bakelite ease. Both serew-type and plun-type terminals are provided, so that the resistor may be casily connected in cither experimental or permanent equipment. The terminals are set on standard $3 / 4$-inch spacing.

Type 500 Resistors are particularly recommemed for use as resistance standards in phog-in type impedance bridges. They are also useful in test equipment (e.g., as terminating impedances in (ransmission line measurements). Their excellent highfrequency characteristirs make them usefal in receivers and low-power transmitters when stable performance is of primary importatere.

Nire values of resistince are normally carried in stock, but others em be built to order. Quetations on request.

SPECIFICATIONS

Accuracy of Adjustment: Each resistor is tadjusted to within 0.1% of its stabed value at the terminals ol the unit, exoepl the 1 -ohm unil which is indjusted to wilhin $0.5 \% \%$.

Maximum Current: All mils will dissipate an maxjmum power of I wait, current corresponding to which is given in the price ligt.

Frequency Characteristics: The error is less thatu $0 . j \%$ below 50 kc . $\mathrm{A} \mid$ higher frequencies errors result fron skin edfect and the effect of reactunce in the resistor The labtes on page 15 represent aceurately the performance of the 1 -alen through ditotolum values. For the higher values, the ertors are manch less than those labulaled becanse of the relatively neglinible shant capradance of an isolated resistor

Temperature Coefficient: Less than $0.002 \% \mathrm{p}+\mathrm{r}$ deyree C.
Type of Winding: Ayrton-Perry when resistance is less than 200) olnns; tgoo ohms and over, unifilar winding on mica cards.
Terminals: Buth terminal screws antl plugs are sinpplied, and ejther can be used. Fiach terminal stud is recessed as a jark to accommodale a plug.
Mounting: Fich resistor is sealed in a case of black monded bakolite with an impregnating wax that protects the nuit from moislure. Two nounting holes are provided (see drawing).
Dimensions: (Lenylh) $23 / 4 \times$ (width) $15 / 16$ inches. Over-all height, exclusive of pluzs, 1 ineh.
Net Weight: 2 oumces

Tyje	Resistunce	Marimum Current	Code Word	Price
500-A	1 !	1.0 g	hj:ststbinid	\$2.00
500-B	10 §	310 nиa	RESJSTDE\&K	2.00
500-C	50Ω] 10 ma	Hesisterolid	2.00
500-D	100Ω	100 ma	hegistaiog	2.00
500-E	200 S	70 ก1\%		2.00
500-F	500	4.) ma	TESISTGOAT	2.00
500-G	600Ω	40 n \%	RESISTGOOD	2.00
$500-\mathrm{H}$	$1000:$	30 mba	WFATSLITM	2.00
500.J	$10,000 \Omega$	10) ntal	HESHSTMILK	2.00

TYPE 525 RESISTOR

This precision-type resistor is capable of dissipating a large amomb of power. It is intended for use in testing the ontpit power of radio transmitters in dumnryantenna service and for use in general laboratory work requiring a resistor of both high precision and high power dissipation. The Type ond 2 Resistor consists of a mica card wound with resistance wire, clamped between two alominum castings, and insulated from them by two thin sheels of mica, the whole mit heing supported on porcelain insalators. The aluminum catstings are heavily ribbed to give a large radiating surface.

This unit is nominally raled at 50 waths, although it considerably greater amount of power can be dissipated for long proiods, without damage, if a large temperature rise can be tolerated.

SPECIFICATIONS

Power Rating: All mits will dissipate bor watts for a $1000^{\circ} \mathrm{C}$. riss in temperature and 100 watts lor a $150^{\circ} \mathrm{C}$. rise.
Maximum Curent; Malues of current for a $1000^{\circ} \mathrm{C}$. rise in tentperalure are given in the price lish.
Accuracy: All unils ate adjuslal to be within (1. 1% of the rated values specified in the price tist.
Temperature Coefficient: Leess than $\pm 0.002 \%$ frer degree C for lemperatures helow $100^{\circ} \mathrm{C}$.
Frequency Characteristics: The frequency claracteristirs of these resistors are in gemeral simitar to those of Tyre 510 Decale-Resistance Linils. Resistors of 100 ohms and below will increase in resistance with h_{1} frequency and the incouse is greater when the shiehd is conmected to one side of the resislor than whem it is floating. The buatohm mil shows an incrense in resigtance at frequencies mu to soveral meyncycles

When the shield is floaling, buat with the shielil prounderl to one side of the wiuting its resistance decreases witlt frepuency and neber rises mbove its nominal value.
Shielding: The aluminmon astings ean be usell as an electrosial ie shiela, bull resistor terminals being insulated from them.
Terminals: Jack-top linaling posts mounted on jsolantite washirs on standamil Genemal Ratio spacing of $3 / 4$ inch.

Mounting: Resistorg are wound mifilarly on micu and clamperf between two pieces of mion and two laswily riblued almaninm castings, the whole unit being supported on porcelain insulators.
Dimensions: (Length) $4 \times$ (widill) $4 \times$ (heigh1) $21 / 2$ inclex.
Net Weight: $11 / 4$ poumuls.

Current

Tupe	Resistance	$100^{\circ} \mathrm{C}$. Rise	Code Whad	Price
525-C	4 ohms	3.5 a	Cabat,	\$8.00
525-D	10 ohms	2.9 a	CAbIN	8.00
525-F	40 ohms	1.1 :	Cabol	8.00
525-H	100 ohms	0.7 a	Caddy	8.00
525-L	600 ohms	0.09 a	CADET	8.00

TYPE 653 VOLUME CONTROL

Type 653 Volume Control is a small, compact attenuation network for use as microphone mixers and master gain controis. Its low noise level, trouble-frce operation, and low cost make it an ideal instrument for this purpose. Thousands are in use in broadcasting and recording studios.

Extremely low noise level is achieved by using only one three-bladed sliding contact with both switch blade and contacts of the same material, berylifum copper.

The impedance remains practically constant in both directions throughout the attenuation range.
A two-section aluminum cover serves as a protection against dust and as an electrostatic shield. The rear section of the cover is removable to allow contacts to be cleaned, while the other section protects the winding and is removed only when the unit is being installed.

SPECIFICATIONS

Attenuation Range: 0 db to complete cul-off. Attenuation is linear with dial setting and adjustable from 0 to 45 db in steps of about $3 / 4 \mathrm{db}$. (Attenuation betwec: contacts is 1.5 db , but the switch bridges two contacts in passing from one to the other.) Above 45 db , the rate of attenuation inereases rapidly to "infinity" (about 120 db with the usual type of mixer wiring).
Type of Section: A ladder-type net work is employed.
Type of Winding: Resistors are wound on cylindrical spools which are part of the bakelite moulding.
Terminal Impedance: 50 -, $200-$, $9: 50-$, and 500 -olin units are carried in stock, but others can be built to order at a slight additional cost.
Shielding: A tro-section aluminum cover is provided. One section is removable and gives access to the contacts for cleaning; the other acts as a dust cover and shield for the windings.

Type	Impedance	Code Word	Price
$653-\mathrm{MA}$	50Ω	CLUMP	$\$ 12.50$
$653-\mathrm{MB}$	200Ω	COACH	12.50
$653-\mathrm{MD}$	250Ω	CARAT	12.50
$653-\mathrm{MC}$	500Ω	COABT	12.50

Switch: A s-bladed beryllium-copper switch makes firm contact with berylijum-copper contact points.
Terminals: Screw terminals are provided.
Dial Plate: A dial plate calibrated directly in decibels also serves as a drilling template in mounting volume control.
Knob: Type 637-K, wilh engraved white arrow. A button is provided on the skirt of the knob for convenience when the control is used in dimlylighted monitoring booths.
Mounting: 'The unit is arranged for panel mounting by means of two screws which are supplied. It may be mounted on panels up to $3 / 8$ inch in thickness. Holes are spaced $11 / 2$ inches apart.
Dimensions: Maximum over-all radius, $18 / 4$ inches. Maximum depth behind parel, $25 / 8$ inches. Shield diameter, $83 / 4$ inches.
Net Weight: 13 ounces.
12.50

TYPE 552 VOLUME CONTROL

This unit has been designed primarily as a master gain control in high-quality broadeast transmission, sound-recording and projection, and public-address systems. Because of its accuracy, excellent frequency characteristic, and compactness, it will be found uscful in measuring circuits where the expense of high-precision attenuation networks is not justified.

The design of the individual resistors makes a very rigid mechanical construction.

No slide-wire contacts are used; the action is entirely step by step. This increases the reliability of the unit, at the same time making exact duplication of attenuation settings easily possible. The step-by-step contacts used in this volume control also have a lower noise level than the best of sliding contacts.

SPECIFICATIONS

Range: One range, 0 db to 50 db , in steps of 1.5 db is carried in stock, but special ranges can be built to order.
Type of Section: T-section and balanced-H-section models are available.
Type of Winding: Unifilar winding or lakelite strips as shown in the accompanying illustration.
Terminal Impedance: Units for working in 500 -ohm circuits are carrierl in stock, but others can be built to order.
Accuracy: All resistors are adjusted to within Q $\%$, which makes the error in aftenuation less than 1 db at all setlings up to 20 ke .

Switch: A multiple blade switch is used.
Mounting: 'lhe entire unit is supporied on al square aluminum sub panel that can be mounted on a panel by means of the same four machine screws that hold the etched-metal dial plates.

Terminals: A terminal strip mounted with soldering lugs is mounted behind the sub panel.

Dimensions: Sub pawel, 41/4 x 41/4 inches; depth behind panel: 3 inches for T-section models; $51 / 2$ inches for balanced-H-section models.

Net Weight: 2 pounds for T-section, 3 pounds for balanced-H-section models.

| Type | Attenuation | Impedance | Section | Code Word | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $552-\mathrm{TC}$ | 30 db in steps of 1.5 db | 500Ω | T | ALARM | $\$ 28.00$ |
| $552-\mathrm{HC}$ | 30 db in steps of 1.5 db | 500Ω | Batanced-II | AGAIN | 48.00 |

TYPE 642-D VOLUME CONTROL

This high-impedance potentionetertype voltage-divider unit is intended for use as a gain control in the iuput circuit of a vacuum tube or as a multiplier for a vacuum-tube voltmeter. It is compact and ruggedly constructed, the contact noise level being safficiently low to permit of its use in the highest quality cireuits.

With sufficjent care in keeping down the stray capacitances in the wiring between the volume control output and the socked, the calibration is accurate to within 0.1 db , at all frequencies up to 16,000 cycles.
Only one type is available in stock, but units having difficrent values of impedance or of attenuation per step can be built to order. Prices on request.

SPECIFICATIONS

Range: One eange, 0 dhy to 30 dl , in steps of' कs dts is carried in stock, but other sizes can be buitl to arder.

Type of Winding: IRC wire-wound resislars are used.
Terminal Impedance: The input imperlance of the unit is 200,000 oltms when the switch side is connected across an essentially infisite-iiupedance load.
Accuracy: All resistors are aljusted to wilhin 1%, which makes attenuation ratios accurate to within 0.1 db . If rapacitance of tube, socket, and wiring is less than $20 \mu \mathrm{mf}$, as is usually the case, the rated accuracy limit of 0.1 db holds to approximately 10,000 eyeles.
Maximum Current: Although normally used in circuits drawing no current, a current of 4 ma will not cause a temperature rise sufficient to affect the raterl acenracy:
Switch: The switch arm is consl ructed of tour-leaf phosphor bronze, which provides for long wear aud exceptionally low contact noise. Thecam-type detent

may be easily removed if stnooth switch action is required.
Mounting: 'Mis unit is similar in conslmetion to the Type 510 Decade-Resistance Units.
Terminals: Three soldering lugs are placed at thee end of the unit for making comections, and the shield has a small opening for connecting wires.
Dimensions: Shield fiameter, $31 / 16$ inelies; depth behind panel, 81/6 inches.
Net Weight: 1 fi ounces.

Type	Alterutation		Inpedonee	Core Ford	Price
	Total	Steps			
642-D	30 db	3 db	200,000 2	bitait	\$25.00

TYPE 526 MOUNTED RHEOSTAT-POTENTIOMETER

The Trpe 526 Mounted RheostatPotentionseter is supplied for measurements where a calibrated rheostat-polentiometer is sufficiently acrurate. The total resistance is adjusted to within $21 / 2$ per cent of the rated value, and a directreading scale with a calibration aceurate within 5 per cent is provirled.

The resistance unit uses a four-finger contact-irm conslruction which averages out the variations of the individual finger contact resishances and so gives a smoolh and linear resistance-rotation curve upon which settings may be easily repeated.

A mounted resistor of this type is recommended for power-fictor measurements with the Type $020-\mathrm{A}$ Bridge, deseribed on page 90 of this catalog, or for the variable standard in approximate measurements of resistance values by bringe methods.

On order, any General Radio standard three-hole mounting rheostat-polentiometer. including tapered models, may be obtained nounted in this manner using the Tris 318-A Dial Plate described on page 154 for the seale. Calibrations are extra; prices will be supplied on request.

SPECIFICATIONS

Winding: The winding is a carefully atjusted Type 471-A Rheostat-Potentiometer (see page: 120).
Accuracy: The total resislance has been adjuslet to within $8 . \% \%$ of the rated value in the price list. The ealibralion is accurate to wilhin 5% of finll scale.
Mountins: Drawn-steel wases wilh haril-whber panel for protection of unit and for convenience in wiring into experimenlal ricenits. The case may he used as an electrostatic shiold.
Terminals: Two pairs of jack-top hinding posts, one
for itupht and one ior output, on statulad Geteral Radio staciny of $3 / 4$ inch, are providect.
Dial Plate: Each unit has a 3 -inch photo-engraved dial plate with 50 divisions and is cillibrated directly in olims.
Finish: Black erystalline lacquer.
Dimensions: (Diameter) $41 / 2 \times$ (height) $43 / 8$ inches, over-aill.
Net Weight: $11 / 2$ pounis.

$T_{H p e}$	Resistance	Max. Current	Code Word	Price
526-D	0. 100 ohms	330 ma	Etier	\$8.50
526.A	0.1000 ohms	104 mia	evade	8.50
526-B	0. 10,000 ohms	83.0 ma	ewent	8.50
526-C	0-100,000 ohms	10.4 ind	EVOKE	8.50

RHEOSTAT-POTENTIOMETERS

Rheostat-potentiometers in a large variety of types and sizes are described on pages 127 to 131. These range in maximum resistance from 0.75 ohm to 200,000 ohms and in maximum power rating from 5 watts to 250 watts.

CONDENSERS

॥
AIR AND MICA CAPACITANCE STANDARDS
-
GENERAL.PURPDSE CONDENSERS WITH AIR, MICA, AND PAPER DIELECTRIG

TYPE 722 PRECISION CONDENSER

The Type 722 Precision Condenser is intended for use as an adjustable air-dielectric eapacitance standard. It is designed to have a high degree of stability under constant laboratory usage. Both the materials and the mechanical arrangement have been selected with this end in view.

The whole condenser assembly is monnted in a cast frame which gives the assembly a degree of rigidity not otherwise possible. This frame, the stator rods and spacers, and the rotor shaft are made of an alloy of alumimum and copper, which combines the mechanical strength of brass with the weight and temperature coefficient of aluminum. Since the condenser plates are of aluminum, all parts have the same temperature coefficient of linear expansion, resulting in a low temperature coefficient of ctpacitance (0,002 per cent per degree Centigrade).

In models where space permits, increased stability is also obtained by the use of plates 1/6inch thick, which reduces materially the sagging which might normally oceur with age, and, since the rotor shaft is horizontal, no constant stress exists which would cause the plates to bend in a direction parallel to the shaft.

Since it is difficult to mount a worm gear on a shaft without some slight eccentricity, the worm in the Type 728 Precision Condenser is cut directly on the shaft. The dial end of the worm shaft runs in ball bearings; the other end is supported by an adjustable spring mounting. Ball bearings are ased at looth ends of the rotor shaft. This arrangement of bearings and drive mechanism results in a backlash of less than $1 / 2$ worm division and an extremely low worm correction.

Connection to the rotor is made, not through the bearing, but by means of a phosphorbronze brush ruming on a brass drum, which assures positive contact.

Losses are low and constant with setting over the usable portion of the scale, because only a small amount of solid dielectric is used and this is placed in a weak and constant electric field. This feature is especially important when the condenser is to be used for determining diclectric loss ly the bridge-substitution method. The solid dielectric is isolantite, but a smaller amount is used than in the older Type 222 Precision Condenser, which results in a better figare of merit and a lower sarface leakage.

The precision of setting is more than adequate for all measurement uses. All models can be set to one part in $2.5,000$ of full scale.

Calibrations for capacitance at the terminals are accurale to $1.0 \mu \mu$ or 0.1 per cent, whichever is the larger. The internal consisteney of the calibration is good to 0.1 per cent of full scale.

A more precise calibration with a worm correction can be supplied for larger models giving corrections which permit an internat consistency of $0.1 \mu \mu f$. The accuracy at the terminals, however, is still limited to approxinately $\pm 1.0 \mu \mu \mathrm{f}$ b the lack of a standari terhnicque for connecting the condeuser into a measuring eirenit.

Three capacitane ranges are carried in stock. Type 7e2-F, with a maximun capacitance of $500 \mu \mu \mathrm{f}$, can be suptied either mounter in a cabinet or unmounted. No calibration is supplied with ummonated models.

Type $722-\mathrm{D}$ is direct reading over two ranges, 2.5 to $100 \mu \mu \mathrm{f}$ and 100 to $1100 \mu \mu \mu^{\prime}$. Type 7qe-M is intended for use in bridge measmrements by the substitution method. It is direct reakling in capacitane difference (i.e., capacitance removed from the (irenit) over a range of $10000 \mu \mathrm{f}$. Neither direct-reading model is supplied ummonterd.

Prices for monted models inctude a whitewood carrying case.

SPECIFICATIONS

Capacitance Range: 'Tlirefe stock morlels are anailable: Type 7e2-D, direct readins in capacilance over I wo ranges, 25 to $100 \mu \mu f^{\prime}$ and 100 to $1100 \mu \mu \mathrm{f}$: 'Type 72L-M, intenderl for bridge-substitation measurements and direct reading in capacitance remaked from the condenser over a rambe of $1000 \mu \mu \mathrm{t}$; and Tripe 7 $42-\mathrm{F}$, a calidnated $500-\mu \mathrm{Hf}$ model.
Rotor Plate Shape: Semicircular for all models, to kive a linenr capacitance characteristic.
Maximum Sale Voltage: All models, 1000 valte peak value.
Dielectric Supports: Two hars of isolantite support the stator assembly. (Quarta insulation man be supplied. Sice price list.
Losses: The figure of merit, $R \omega \rho^{2}$, is 0.05×10^{-12} for isolantile insulation, 0.003×10^{-12} for quarts.
Drive: A worm and gear drive is used. To reduce irregularities and hacklash the worm is ent integral with the shalt. Backlash is less than $1 / 2$ worm division. If the desjred setting is always approached in
the direction of insereasing seale reading, no caljbration etror will ressult.
Calibration: Nome required tordirect-reatling models. True \%最-F is supplied with a mounted chart, giving the capacitance to the nearest $0.5 \mu_{\mu}$ for 51 poinls. The capacitante difference for each pair of seltings is also given on the chart to facilitate interpolation. An alternative chart giving the caparitance to 0.1 $\mu \mu \mathrm{l}$ and a worm correction can he supplied. See price list. The absolute capacitance, howe ver, is good only to $1.0 \mu \mu$.
Mounting: Monnleal models are altached to an aluminum panel finished in black crackle larquer and enclosed in a shielded walnut cabinet. A wooden storage case with lock and carrying hande is included.
Dimensions: (Mounted models) Panel, $8 \times 91 / 8$ indles; tepth, $81 / 8$ inches. (Tmmountect models) $7 / 4$ (leninth) $\times 63 / 8$ (width) $\times 7$ (deplh) inches.
Weight: $111 / 8$ pounals; $201 / 4$ pounds wilt carrying case.

MOUNTED MODELS

Type	Cupacitance Rante	Corde Word	Price
722-F	45 to $500 \mu_{\mu \mu} \mathrm{f}$.	cobit	\$85.00
722-D	25 to $100 \mu \mu$ fand 100 to $1100 \mu \mu \mathrm{f}$, direct reading	CRTEL	110.00
722-M	0 to $1000 \mu \mu$, dircet reading in capacitance removed from circuit	comic	100.00
Worm correction calibration data for above condensers		wormy	35.00

UNMOUNTED MODEL

Tyive	Maximum Capacitance	Code Word	Price
$722-\mathrm{FU}$	$500 \mu \mu \mathrm{~F}$	cuhrmanel	$\$ 65.00$

QUARTZ INSULATION

Any Type 720 Precision Coulenser can be obtained with quartz insulation.

TYPE 246 VARIABLE AIR CONDENSER

This condenser is for use in measuring and experimental circuits requiring a lighgrade unit in which extreme precision of setting and accuracy of calibration are not required - as the "balancing condenser" in the substitution method of capacitance measurement, for example.

It is rigidly constructed, with cast end plates and isolantite insulation. Mechanically and electrically it is similar to the Trpe 222 Precision Condenser (now obsolete, see previous catalogs), but it has no worm drive.

SPECIFICATIONS

Capacitance Range: Three sizes, $1500 \mu \mu f, 3000 \mu \mu \mathrm{f}$, and $5000 \mu \mu \hat{i}_{\text {, }}$ are carried in stock.

Drive: A spur-gear slow-motion drive having a ratio of $10 ; 1$ is an auxiliary control for the large knob and dial mounted on the rotor shafl.

Calibration: No calibration is supplied with this condenser, but a mounted calibration curve accurate to within 0.5% of full scale or a mounter calibration table for 11 points, accurate to 0.5% of full scale, can be prepared to order. See the price list.

Maximum Voltage: Tyre 246-L and T'ype 246-M are rated at 800 volts, peak; Type 246-P, 500 volts, palk.
Mounting: The condenser is mounted on an aluminum panel, finished in black crackie lacquer and enclosed in a shielded walnut cabinet.
Dimensions: Panel, $71 / 2 \times 71 / 2$ incues. Cabinet, (height) for Type $24(6-\mathrm{L}, 83 / 8$ inches; for Types 246-M and 246-P, $113 / 8$ inches, over-all,
Net Weight: Type qu6-L, 11 $1 / 4$ peunds; Typers $246-\mathrm{M}$ and $246-\mathrm{P}, 15$ pounds.

Nominal Capacitance

Type	Maximum	Minimum	Code Word	Price
*246-L	1500 H/f	55μ	cepar	\$38.00
*246-M	$3000 \mu \mathrm{~m} /$	$70 \mu \mu \mathrm{~F}$	craos	45.00
*246-P	$5000{ }_{\mu \mu} \mathbf{f}$	$72 \mu \mathrm{f}$	CHARY	54.00
Mounted Calibration Curve Mounted 11 -point Calibration Table			cusve	4.00
			chart	3.50

TYPE 539 VARIABLE AIR CONDENSER

Type 539 Variable Air Condenser is a general-purpose instrument. Lower in price than the Tyre 722 and Type 246 Condensers, it is, nevertheless, a well-designed, carefully constructed instrument with good electrical and mechanical characteristics.

Mounted models find a wide use as laboratory condensers for bridge measurements or in experimental circuits. Unmounted types are used as the variable capacitance in beat-frequency oscillators and standard-signal generators made by the General Radio Company, as well as in those of other manufacturers.

Three brass rods, extensions of which serve as mounting pillars, rigidly support the two end plates, on each of which is a block of isolantite carrying the two rods to which the stator is attached. This method insures low losses and facilitates the use of special plate shapes, like those used in Types 539-T, 539-TA, and 539-X.

Mounted models are supplied only with semicircular plates giving a linear capacitance variation. These are also available unmounted. In addition, the following models with plates shaped for specific uses are available:

> TYPE 539-T (Straight-linc-frequency)

Type 539-TA (Straight-line-frequency with insulated rotor)
Type 589-X (Special spread-out scale for beat-frequency oscillators)
A complete description of these models is given in the specifications.
Type 539-TA is intended for use in circuits where both sides of the condenser must be above ground potential. The insulated rotor construction results in an extremely low power factor for the direct capacitance between rotor and stator. For complete data, see specifications.

Mounted models can be supplied with calibrations if desired. Sec price list.

SPECIFICATIONS

Caparitance Range: Sce price list.

Plate Shape: Sontwirenar rolor plates giving linear ctupacitance variation with seltingstre used on Tyres $539-\mathrm{J}, 539-\mathrm{K}$, and 583-L tund on all mourted models.
Rotor plates for Types $589-\mathrm{T}$ and $\mathbf{3 9 9 - T}$ atre cul to give a linear frequency variation with selting over 950° of a possible 270° angle of rotation when a capacitance of $85 \mu \mu$ is eonnected in parallel with the condenser. A counterclockwise rotation from Hee mininum capacitance position of $40^{\circ}, 90^{\circ}, 230^{\circ}$, and 255° increases the capacitance by $0.4 \%, 5 \%$, $\$ 2 \%$, and 100%, respectively, ol the total increment.

Typh $\overline{30}$-X has a spretidont smale for use on at bewt-frequeney oscillator. A comuterelockwisc rohat tion from the minimum capacilance pasition of 40°, 90°, 230°, and 280° increases the crmatiance by $0.4 \%, 5 \%, 82 \%$, and 100%, respectively, of the fotal indrement.
Supports: Two hars of isolantite, trealed to prevent alisurption of moisture, support the stator assembly.
Low Losses; $R_{0} C^{2}$ is approximately 0.03×10^{-12}.
Insulated Rotor Model (Type 539-TA): Direct crpacitance between rotor and stator is given in the price list helow. The power factor of this capacitance is less than 0.00062. The eapacitanee hel ween retor and frame is $94 \mu \mu$; that betwern stator and frame is $12 \mu \mu \mathrm{t}$.
Maximum Voltage: Ty'e 539-J is rated at 1100 wolls, peak; True $\begin{gathered}39-K \text { at } 800 \text { wolls, peak; and }\end{gathered}$
 volts, peak,

Mounting: Bolt mounted imal unmounted models aree available.

Knobs and Dials; Nontraresupplind with mamomemb momels. Note tatat all models latve $3 / 8$-inch shafts
 a Soxle spread wer 870°, instench of the 180° required by the other types
Terminals: On ummonnted models, soldering lugs are momed on the lower isolantite support of all exrept TYPe 599-TA. The rolor connestion for this rombenser is brought out through an isolantite bushing in the rear end plate. Mombed momels have jack-top binding posis momited on the patel,

Dimensions; Ltmmonaled models, see accompanying oulline drawing: depth behind punel (A) G inches, aser-ill. Mombed models, pruel, $41 / 2 \times 151 / 2$ incles; height, $8 \frac{3}{4}$ inelues, over-all.

Net Weight: Approximately $28 / 4$ ponnds for mo mounterl models; $63 / 4$ pounds for mounted tuolels.

UNMOUNTED MODELS

Tppe	Nonanal Capaciance		Descriptim	Code Word	Prite
	Meximam	Міпішит			
539-J	500 m ${ }^{\prime}$	40 m ${ }^{\text {r }}$	Straight-line capacitance	4TLS	\$10.00
539-K	1000 H/d	40 mul	Straight-line capacitance	Arove	11.00
539-L	2000 , μ	40 m μ	Straight-line capacitance	ATTIC	12.00
539-T	$500 \mu \mu \mathrm{~F}$	$30 \mu \mu$	Straight-line frequency	ctosf	12.00
539-TA	$500 \mu \mu \mathrm{~F}$	$18 \mu \mu$	Straight-fine frequency, insulated sotor	cistin	15.00
539-X	$900 \mu \mu \mathrm{~F}$	$40 \mu \mu \mathrm{f}$	Special spread-out seale	Abdich	12.00

MOUNTED MODELS

Type	Fominal Capuritame		Core Word	Price
	Maximum	Minimam		
*539-A	500 mpr	50 muf	Astay	\$22.00
*539-B	1000 , ${ }^{\prime} \mathrm{F}$	55 m, ${ }^{\text {f }}$	Assert	23.00
*539-C	$2000 \mu \mu \mathrm{~F}$	60 , μ^{μ} f	Aster	24.00
Mounted Calibration Curve 1 1-point Calibration Table			CORVE	4.00
			¢Hater	3.50

 IATEN1 NOTICE. See Note 17, page x.

TYPE 247 VARIABLE AIR CONDENSER

This is an inexpensive condenser with a mumber of leatares that make it popmar in the lamotory developmeat of experimental apmalus. The phates are of hass. Each stack is smidered togethee to form a rigeged unit of low resistance, and the use of hard rubber insulation keeps the losses low.

Two models are available: one with straight-Fine-capacitance plates, momed in a metal case; the other mumonled, with plates shated to pive an appoximately straight-line-wavelength characteristic.

SPECIFICATIONS

Capacitance Range: Ser price list

Plate Shape: Type 24t-G, shaight-lime-tapacilaner; Typer 24-Fi, sl ratht-line-wa pelength, deseasitur for clockwise rotal ion,
Losses: $R_{\omega} C^{2}$ is appoximately $0.08 \times 10^{-2} 2$.
Maximum Voltage; ;00l volls, pati,
Dive: Tyre 247-G is surplerd with it gear dive
 without knob. The shaft, lianeler is $1 / 4$ inch.

Mounting: Tyre 847-G is mounted in a drawi-sicel case will luard rubber pathel. A lrilling |emplata amb

 41/4 inches. Tries 247-F, pincl space, $37 / 8 \times 37 / 8$ ineles; deplit lehind palled, :多多 inches.
 1^{3} \% pounds.

Type	Nominal Crpariance		Code IVort	Price
	Mirrimzm	Minimum		
247-G	$500 \ldots \mathrm{H}$	$30 \mu \mu \mathrm{l}$	colic	\$5.75
247-F	500 ,	$20 \mu \mathrm{mf}$	cocos	3.00

UNMOUNTED VARIABLE AIR CONDENSERS

ranging from $15 \mu \mu \mathrm{f}$ to $150 \% \mu \mathrm{f}$ maximum capacitance are listed on puyes 132 to 134 .

TYPE 509 STANDARD CONDENSER

Type 509 Standard Condensers are compact fixed laboratory standards of capacitance ranging in value from 0.001 to 1 microfarad. The use of these condensers in conjunction with a Type 722-I. or Type 729-M Precision Condenser extends the range of precision measurement by a direct substitution method well into the large capacitance values. The error in a composite standard so formed is less than 0.1 per cent or 1 micromicrofarad, whichever is the greater.
Jarge fixed-capacitance standards with air dielectric are prohibitive in cost and are inconvenient in the weight and size necessitated by the mechanical requirements of rigidity. Solid dielectries, while not as stable ats air, are the best solution and, by careful design and construction, viriations caused by temperature, pressure, and humidity can be reduced to negligible importance.

Each Type 509 Standard Condenser consists of two Type 505 Condenser Units which have been put through an additional aging process. The stability of the units after the repeated aging cycles is better than the accuracy of the final calibration, 0.1 per cent.

The final value of the finished condenser is measured with an error of less than 0.1 per cent or $\mathbf{1}$ micromicrofarad, whichever is the larger, and is entered with the date on a calibration certificate supplied with each condenser.

These condensers are mounted in cast aluminum cases which act as shields. The terminals are jack-top binding posts (one of which is mounted directly on the case). Auxiliary Type 274-P Plugs fit directly into the jack tops of the terminals immediately below. When plugged in in this way the capacitance values are added by being placed in parallel, and the cases are all connected together, thus reducing to a minimum the proximity effects between condensers.

SPECIFICATIONS

Capacitance: Ten values of capacitance between $0.001 \mu \mathrm{f}$ and $1.0 \mu \mathrm{f}$ are available in stock,
Aceuracy of Adjustment: Each condenser is carefully adjusted to within 0.25% of the nominal capacitance value eagraved on the case.
Aceuracy of Colibration: Alter each condenser has heen aged, adjusted, and mounted, ils capacitance is measured as carelully as possible, and the value of capacitance, accurate to within 0.1%, is entered on a certificate of calibration which is packed with each unit.
Stability: Over reasonable periods of time (e.g., one year) each condenser will maintain its calibrated value to within 0.1%.
Temperature Coefficient: Iess than 0.01% per degree \mathbf{C}.

Power Factor: The power factor of all sizes listed is less than 0.05%.
Maximum Voltage: See price list. This rating means that the condenser will withstand safely the a-c voltage whose peak equals the given rating up to the given frequency. Above that frequency, the allowable voltage decreases inversely with the square root of the frequency because of the power loss.
Mounting: Two sizes of cast aluminum cases are used, depending upos the physical dimensions of the condenser stack. The price list shows the type of case used.

Terminals: Two jack-top binding posts spaced 3/4 of an inch apart are mounted on the case. One terminal is grounded, and the other one is insulated by means of an isolentite bushing.

Dimensions: Small cetse, (length) $47 / 8$ inches x (width) $21 / 2$ inches x (height) $17 / 8$ inches, over-all. Large case, (length) 6 inches \times (width) $33 / 8$ inches \times (height) $23 / 8$ inches, over-sill.

Net Weight: One and one-half pounds for all condensers mounted in small cases; $21 / 2$ pounds to $81 / 2$ pounds for all condensers mounted in large casss.

Type	Capacitance	Peak Volts	Frequency	Case	Code Word	Price
509-F	0.001	500	2500 kc	Small	goonconboy	\$12.50
509-G	$0.002 \mu \mathrm{f}$	500	1250 kc	Small	goodconbug	12.50
509-K	0.005μ	500	500 ke	Stmall	goodconcat	12.50
509-L	0.01 нf	500	250 kc	Small	GOODCONDOG	12.50
509-M	$0.02 \mu \mathrm{~F}$	500	125 kc	Small	goodconete	15.00
509-R	0.05 Hf	500	80 ke	Large	GCODCONPIG	18.00
509.T	0.1 Hf	500	40 kc	Large	GOODCONROD	22.00
509-U	0.2 uf	500	20 ke	Large	goodconsin	25.00
509-X	0.5 - f	500	8 ke	Large	GCoDCONKBm	32.00
509.Y	1.0 m	500	4 kc	Large	GOODCONTOP	48.00

TYPE 505 CONDENSER

This is a small, handy, mica condenser having low losses and excellent stability of calibration. It is intended to fill the gap between accurately adjusted primary standards on the one hand and the inexpensive moulded types on the other.

India mica was chosen as the diefectric because of its electrical characteristies and a mounting method was developed that makes capacitance practically independent of temperature and power factor independent of humidity. The metal clamp wlich holds the condenser floats, i.c., is not connected electrically to either condenser terminal.

Every piece of mica is carefully inspected for mechanical defects and other imperfections which cause large dielectric losses. Residual losses are reduced by the use of yellow low-loss bakelite for the cases.

Each condenser is carefully aged and sealed in high-melting-point wax in a low-loss bakelite case.

The plug-type terminals permit these condensers to be stacked in parallel to build up any required value of capacitance.

SPECIFICATIONS

Capacitance: Sizes are available in slock as shown in the price list (OHlier sizes can be buill to oriler, prices on request.)
Accuracy of Adjustment: See price list.
Temperature Coefficient: Iess than 0.01% nel degree C. belween 0° and $50^{\circ} \mathrm{C}$

Maximum Voltage: See price list. This ral ing meatus that the coutenser will sately withstand the a-e voltange whose poak equals the given raling up to the

Change in power factar with frequency lor a $500 \mu \mu \mathrm{f}$ contlenser

given frequency Above that frequency, the allowahle vollage decreases in versely with the square root of the frexumey hetanese of the power loss.
Power Factor: Less than 0.05% for frequencies below Q Me, except for the thiee smatl sizes. Simeial precantions are taken in assenbling and sealing the conlensers to insure ngains! change in capacitance or power factor due to varging moisture content of the air and to aging.
Terminals: Screw ferminals spaced 3/4 inch apart. Two 'TYpe, 27 h- P P Phgs are supplied with each condenser so that it may be converted to plag-terminal moclel.
Mounting: Low-loss (yellow) bakelite cases in two sizes as shown in He sketeh. Tyres 500゙R, $500-\mathrm{T}$, $505-\mathrm{U}$, and $505-\mathrm{X}$ take the large case.
Dimensions: See sketch.
Net Weight: 4 ounces for small, 12 ounces for larse size.

Type	Capueitance	$\begin{aligned} & \text { Idinsted to } \\ & \text { Within } \end{aligned}$	Power Firctor	Peak Volts	Frequency	Code IVord	Price
505-A	100 \%	10\%	0.1\%	700	2000 ke	Condimaliy	\$3.50
505-B	$200 \mu \mu$	3%	0.1\%	700	1000 kc	CONDENHELI.	3.50
505-E	$500 \mu \mu$	2\%	0.08\%	300	1900 ke	condencoat	3.50
505-F	0.001μ	1\%	0.05\%	510	800 ke	condekdram	3.50
505-G	$0.002 \ldots$	1\%	0.05\%	500	400 ke	condreneyre	3.50
505-K	$0.005 \mu \mathrm{~F}$	1\%	0.03\%	500	160 kc	condenfact	4.00
505-L	0.01 \#f	1\%	0.0.3\%	500	80 ke	condevalml	4.50
505 M	0.02 \%	1\%	0.05\%	500	40 le	CONOENIEAS	5.50
*505-R	0.05μ	1\%	0.0.\%	500	40 ke	condencala	6.50
*505-T	0.1 m	1\%	0.05\%	300	20 ke	Conimenchow	7.50
*505-U	0.2 uf	1\%	0.0.5\%	500	10 kc	CONDENWIPE	12.00
*505-X	0.5 m	1\%	0.05\%	500	4 ke	Condenwilt	20.00

[^5]
TYPE 219 DECADE CONDENSER

Type 219 Decade Condensers are assemblies of two or three Type 380 DecadeCondenser Units (see page 40). They are direct reading in capacitance and, while not intended as precise capacitance standards, they are sufficiently accurate for much work of ordinary commercial accuracy. In experimental tuned circuits, in bridge measurements, and in filter design, the wide range combined with the directreading feature makes them an extremely useful laboratory accessory.
Both capacitance and power factor will vary slightly with frequency.

In Type 219-L and Type 219-M Decade Condensers paper dielectric is used in the lenths-microfarad decade. All other decades hatve mica dielectric.

SPECIFICATIONS

Capacitance: Four decaule combintions are available as shown in the price list helow.
Accuracy: Sce specifications for Type 380 DecarleCondenser Units, page 40. For boxes containing thousandths microfarad decades, allowance nust lye made for the capacitance of wiring atal switches. This value is suppliex on the nameplate.
Maximum Voltage: See specifications for Trow 380 Decade-Condenser Unils, page 41).
Power Factor: Sce speefications for Typer 380 DecateCondenser Units, page 10.

Mounting: The decaces are assembled on an aluminum panel and monnted in a shielded walnut calinel.
Dimensions: Types 219-K athl 219-M, (length) $133 / 4$ x (wiclh) $51 / 2 \times$ (height) $53 / 4$ inches. Trees $219-1$, and 219-N, (leng(li) $105 / 8 \times$ (width) $51 / 2 \times$ (height) a $3 / 4$ inches.

Net Weight: Type $219-\mathrm{K}, 103 / 4$ ponnds; Type 219-LA, 61/2 pounds; TYPE是!!-M, $85 / 8$ pounds; TYpe eti9-N, ($3 / 8$ pounds.

Type	Capasitance	No. of Dials	Type 380 Decades Used	Code Fiord	Price
219-K	$1.110 \mu \mathrm{f}$ in $0.001{ }_{\mu} \mathrm{f}$ steps	3	$\mathcal{F}, \mathrm{M}, \mathrm{N}$	cross	\$90.00
219-L	$1.10 \mu \mathrm{f}$ in $0.01{ }_{\mu}{ }^{\text {l }}$ steps	2	L, M	COVEI\%	35.00
219-M	$1.110 \mu \mathrm{f}$ in $0.001 \mu \mathrm{f}$ steps	3	L, M, ${ }^{\text {N }}$	hrier	45.00
219-N	$0.110{ }_{\mu} \mathrm{f}$ in $0.001{ }_{\mu} \mathrm{f}$ steps	${ }^{2}$	M, N	crony	35.00

TYPE 380 DECADE-CONDENSER UNIT

The Type 380 Decade-Condenser Unit is an assembly of individual paper or mica condensers and a selector switcl arranged so that any one of ten decade values may be chosen. It is made in three individual decade series, each with ten steps of 0.001 $\mu \mathrm{f}, 0.01 \mu \mathrm{f}$, or $0.1 \mu \mathrm{f}$, respectively.
The excellence of these units is due, in large measure, to care in manufacture and aging. Mica units, with the exception of the $1.0 \mu \mathrm{f}$ decade, are made up of smill moulded condensers. The $1.0 \mu \mathrm{f}$ mica decade uses Trpe 505 Condensers. Paper condensers are thoroughly impregnated with molten paraffiu during winding. Succeeding layers of the conducting foil make contact, thus avoiding the increase in power factor with frequency which occurs when only the ends of the winding are connected.

The switch is of rigid construction and carrics a detent mechanism for positive location of switch positions. Contact is made by means of cams bearing on phosphorbronze springs. A bakelite shaft is used.

SPECIFICATIONS

Capacitance: Decades with steps of $0.0011 \mathrm{f}, 0.01 \mu \mathrm{f}$, and $0.1 \mu \mathrm{f}$ are available. Each decade uses four condensers of $1,2,3$, and 4 units, respectively. These are combined in parallel by the switeh to produce the desired capacitance at each switch position.
Dielectric: See Table I. The condensers in Type $380-\mathrm{M}$ and Tyre $380-\mathrm{N}$ are moulded in bakelite cases. Type $380-\mathrm{F}$ is metle up of Tyrie 505 Condensers (see page 37).

Maximum Voltage: See Table I. At bigber frequencies the maximum safe voltage decreases and is inversely proportional to the square root of the frequency.

Power Factor: See Table I.
Calibration Aceuracy: See Table I.

TABLE I

Type		Capacitance		Accuracy	Dielectric	Power Fantor	Maximum Voltage at Frequency	
380-F	1.0	$\mu \mathrm{f}$ in 0.1	${ }_{\mu} \mathbf{f}$ steps	1\%	Mica	0.05\%	500	4 kc
380-L	1.0	μf in 0.1	$\mu \mathrm{f}$ steps	x\%	Paper	1.0\%	300	1 ke
380-M	0.1	μ in 0.01	${ }_{\mu} \mathrm{f}$ steps	1\%	Mica	0.1\%	300	100 kc
380-N	0.01	$\mu \mathrm{f}$ in 0.001	$\mu \mathrm{f}$ steps	1\%	Mica	0.2\%	300	1000 kc

Accessories: One Typf: 208-Z Klob and one Type 880-93 Dial Plate are supplied.

Mounting: Machine screws for attaching the decade to a panel are supplied.
inches; behind puncl, 4 inches. Types $380-\mathrm{L}, 380-\mathrm{M}$, and $380-\mathrm{N}$, panel space, $27 / 8 \times 33 / 8$ inches; behind panel, $41 / 8$ inches.
Net Weight: Type 880 -F, 3 pounds, 10 ounces; Types 380-L and 380-M, $11 / 2$ pounds; Type $380-$ N,
Dimensions: Tripe 380-F, panel space, $43 / 4 \times 41 / 4 \quad 1$ pound, 6 ounces.

Type	Code Werd	I'rice
380-F	acute	\$58.00
380-L.	ADAGE	10.00
380-M	adder	12.00
380-N	adole	10.00

TYPE 106 STANDARD INDUCTANCE

This fixed standard is accurately adjusted at 1000 cycles. Low and nearly constant resistance at audio frequencies is insured by the use of stranded wire having the separate strands insulated from each other.

Interaction between the field of the inductor and external fields is practically eliminated by the use of an astatic form of winding in which the ficlds of two coil sections neutralize each other in regions extermal to the case. This makes the inductance independent of surroundings. Conversely, disturbing voltages induced by an external field will practically cancel out in the two halves of the coil.

Coils are form wound, bound with tape, and impregnated with wax. There is no metal in the concentrated field of the coil.

Type 106-T. Standard Inductance

SPECIFICATIONS

Inductance Calibration; The 0.1 ml size is adjusted to within 0.2%, all others to within 0.1% of their labeled values at 1000 cyeles.
Resistance: Resistance at 1000 cycles is the same as the $d-c$ resistance, the value of which, measured at room temperature, is entered on a cerlificate mounted on the bottom of the cabinel. See table below for approximatc values.
Temperature Coefficient: The temperature coefficient is less thar $\pm 0.004 \%$ per degree C.
Maximum Current: Se table.
Losses: The maximum value of the energy factor $Q\left(=\frac{X}{R}\right)$ and the frequency for which it oecurs for
each size are given in the table.
Frequency Error: Disregarding skin effect the ractional change in inductance with frequency is f^{2} / f_{o}^{2} where f is operating frequency and f_{0} the natural frequency. At one-tenth the natural frequency, therefore, the error is 1%.
Mounting: All units are assembled in walnut cabinets with bakelite panels.

Dimensions: Panel, $57 / 8 \times 57 / 8$ inches. Cabinet, (height) $31 / 2$ inches, over-all, except Trpe 100-M which is $55 / 8$ inches, over-all.
Net Weight: Approximately 9 \%/s pounds, except Type 106-M which is 5 pounds.

Type	Nominal D-C Resistance	Maximum Current	$\begin{gathered} \text { Maximum } \\ Q \end{gathered}$	Frequency for Maximum Q	Natural Frequency
106-L	0.18Ω	8.5 a	210	300 kc	6000 kc
106-G	1.80Ω	1.0 a	190	150 kc	2000 kc
106-J	12.2Ω	0.5 a	170	60 kc	500 kc
106-K	85.3Ω	250 ma	80	20 kc	150 kc
106-M	545Ω	150 ma	40	7 ke	35 kc
Type	Inductance		Code Word	Price	
106-L	0.1 mh		INNER	\$25.00	
106-G	1 mh		Inekt	25.00	
106-J	10 mb		imate	25.00	
106-K			islet	25.00	
106-M		1 hen		30.00	

TYPE 107 VARIABLE INDUCTOR

A continuonsly wariable calibrated inductor is a necessary adjunct to many kinds of electrical measurements. Tyיr, 107 Variable Imbuctors are high-grade laboralory instruments suitable for use as inductance stadards of molerate accuracy. Their outstanding leatures are direct-reading dials, permanence ol construction. low losses, and high eurrentcarrying capacity.

Separate terminals are brought out for rotor and stator so that they may be connected in series or in parallel as a selfinductor, or ased separately as a mutail inductor. The inductanees of rotor and stator have been carefully equalized to eliminate losses from circulating comrents when the parallel connection is used.

SPECIFICATIONS

Inductance Range: Five sizes :nve availatle in stock covering a total range of approximately 1.7 h to 500 mh ty the use of holl the series ancl paralilel combetions. Maximum ans miniman walues for cach connection are slown in the table below.
Calibration: The induetance ior the series connectionns accurate to within 7% of tull-scale reading at 1010 cycles, is engraved on the dial. The inductance with the parablel connection is one-quarter that for the serics conneetion to withing 1%. Data for computing Hie multaal inducturce:aresuppliel ontlice mameplate.

Losses: The maximm walne of the factor $Q\left(=\frac{X}{R}\right)$ at full-stale selt tiug for the series emnerelion and the frequency at which it ocenrs for each size atre given in the talle helow.
Natural Frequency: See table below.
Maximum Current: The maximuna allowatble emrent for a dissipation of 15 watls and temperature rise of $40^{\circ} \mathrm{C}$. (series commection) is cagraved on each nameplate, Sce table for a list of values.

Type	$D-C$ Renistance		Maximum Curremt	$\begin{gathered} \text { Maximum }{ }^{*} \\ \quad \% \end{gathered}$	Frequeney for* Muximem 0	Nulwral ${ }^{*}$ Frequency
107-」	0.17		8.5 a	110	$4(1) \mathrm{ke}$	5000 kc
107.K		0	4.0 a	140	200 ke	1500 kc
107-L		9	1.7 a	185	(0) he	500 ke
107-M	40	9	0.60 at	05	90 kc	150 ke
107-N	000	9	0.14 :	90	7 ke	30 ke

* Fior fuli-scale sethinge, series conacelion.

Mounting; All units are mounteal on bakelite panels and enclosed in walmat cahinels.

Type	Self-Iteductance		Mutuct Inductame	Corle IVord	Price
	Series	Porritel			
107-J	7-50 $\mathrm{hh}^{\text {h }}$	1.7-12.5 ${ }^{\text {¢ }}$	0-10.8 $\mathrm{mh}^{\text {h }}$	nathm	\$35.00
107-K	60-500 $\mu \mathrm{h}$	15-125 $\mu \mathrm{h}$	(0-110 ${ }^{\mu} \mathrm{h}$	11.thiry	35.00
107-L	$0.6-\quad 5 \mathrm{mh}$	0.15-1.25 mh	0-1.1 min	hatary	35.00
107-M	6-50 mh	1.5-12.5 mh	$0-11 \mathrm{mh}$	нотец	40.00
107-N	60-500 mh	15-125 mh	0-110 mis	hoyme	40.00

FREQUENCY- AND TIMEMEASURING EQUIPMENT

The measurment of frequency and thine is a specialized field, and a description of instruments for theasuring these quantities requures a considerable amount of backpround material. Fer this reason, the General Radio Company publishes Bulletin 1-, entitled "Pequency Mcasurements at Radio Frerpumeies," in which is described in detail a ecmplete line of fre-quency-measuring enfipment. The brief listings given on pages 41 to 58 of this catalog in licate the types of instruments a wailable.

Those interested in the measurement of frequency are urged to send for a copy of Bulletin 11.

CLASS C-21•H STANDARD-FREQUENCY ASSEMBLY (SERIES 690)

Net Weight: $8701 / 2$ pounds for floatins-battery assembly, $3598 / 8$ pounds for corpletely a-c operated assembly, relay rack included.

The Class C-21-H Standard-Frequency Assembly is a complete and highly preeise primary standard of frequeacy. It is also a crystal-controllerl clock of bigh precision. More than 60 units have been installed and are now operating in all parts of the world in industrial organizations, research laboratories, observatorics, and frequency monitoring stations. Many of them are used as national standards of frequency by communications administrations in North American, European, and Asiatic countries.

The assembly is provided with a means of measuring its output frequencies in terms of standard time without reference to any other slandard of frequeacy. Harmonie series based on fundamentals of 1,10 , and 50 kilocycles are available at its output lerminals to furnish standard frequencies over the entire communication-frequency spectrum. From il con also be obtained one-second pulses and standard time. The accuracy of all output frequencies is better than ± 5 parts in 10 million over periods of several months. Each of the output frequencies is known with the same aceuracy.

The assembly is furnished with either of two types of power supply. If line failure is rare, or if certainty of continuous timing is not demanded, the Type 696-A Power Supply operates the assembly satisfactorily. The Type 695-A Baltery Clarging Equipment furaishes filament and plate power to operate the complete assembly and maintains a full charge on flonting batteries which will supply emergency power. Prices include vacuums tubes and interconnecting cables. The price of the flouting battery assembly docs not include the batteries.

SPECIFICATIONS

Frequency Range: Harmonic frequencics between 1 ke and 50 Me , seconds pulses, and standard time are the available outputs.
Stability: 5 parts in 10 million or better.
Power Supply: Either floating batteries charged from the a-c line or direct operation from the line.

Mounting: Standard 19 -inch relay rack. Intereonneeting conbles and plugs are supplied.
Dimensions: (IIeight) $091 / 8 \times$ (width) $90 \times$ (depth) 24 inches, over-all.

PATENT NOTICE. See Notes $1,3,1,14,14,19,30$, puge v.

INTERPOLATION AND AUXILIARY EQUIPMENT
 FOR USE WITH
 CLASS C.21-H STANDARD-FREQUENCY ASSEMBLY

This interpolation and auxiliary equipment used in comjunction with a Class C-21-H Standard-Frequency Assembly makes possible the direct precision measurement of any radio frequency up to $25,000 \mathrm{kc}$. For frequencies above $25,000 \mathrm{kc}$, measurcments can be made with almost equal ease by utilizing heterodyne methods.

TYPE 616-B HETERODYNE FREQUENCY METER

A calibrated, oscillating, frequency meter with detector and audio amplifier. The oscillator has a vollage-stabilized cireuit and is temperature controlled. Range 100 to 5000 kc . It is used either as an interpolation device or to transfer the unknown frequency to a local strong oseillator.
Code Word: manor
Price: $\$ 575.00$

TYPE 617-B INTERPOLATION OSCILLATOR

A 0.5000 -eycle, direct-reading, linear-scale oseilator with an accuracy of \pm cycles. Used to measure beat frequencies between an unknown frequency and a standard 10 -kc harmonic.
Code Word: Maple
Price: $\$ 500.00$

TYPE 619.C HETERODYNE DETECTOR

This unit, a tuned regenerative detector, combines the standard and unknown frequencies, producing an audio-frequency-output signal of hetween 0 and 5000 cyeles which is then fed to the Type 617-B Interpolation Oscillator for measurement.
Code Word: matin
Price: $\$ \mathbf{\$ 5 0 . 0 0}$

TYPE 612-B COUPLING PANEL

This unit is the central control panel of the auxiliary equipment. The switches perinit the interconnections necessary for a complete frequency measurement.
Code Word: marry
Priee: $\$ 65.00$

TYPE 614-A SELECTIVE AMPLIFIER

For central instaliations to suppiy many laboratories, the selective amplifier provides exact one-kilocycle multiples between 1 kc and 10 kc for timing, testing, and culibration purposes. Code Word: DICKy

Price $\$ 975.00$

SPECIFICATIONS

(Specifications for cach instrument will be found in Bulletin 11.) Power Supply: 110-115 volts, $50-60$ cycles.
Mounting: Type 480-A Relay Rack priced at $\$ 40.00$. Blank panels to fill rack as shown are priced at $\$ 7.25$.
Dimensions: (Height) $691 / 2 \times$ (width) $20 \times$ (depth) 18 inches,over-all. Net Weight: $2051 / 4$ pounds.
Price: Includes relay rack, blank panels, and cables for interconnections.

Price

CLASS C-10 STANDARD-FREQUENCY ASSEMBLY

The secondary standard is widely used in frequency measurements where the reliability and extreme precision of a primary standard are not essential. The Class C-IO Standard lirequency Assembly consists of a highly stable, temperature-controlled piezo-electric oscillator and one multivibrator. Acditional muitivisrators up to a total of three can be added, if desired. As ordinarily supplied, the multivibralor operates at 10 kilocycles. The quartz bar may be either 50 ke or 100 ke . The 50 -ke bar is recommended becanse of its greater stability. The assembly is completely a-c
operated and is composed of the following instruments:

Unit	See Page
Type 675-L Piezo-Electric Oscillator	Below
Type $692-A$ Multivibrator (10 kc)	Below
Type (i76-A Quartz Bar (50 ke) or	51
Type 476-A Quartz Bar (100 ke) with	
Typsi 476-P1 Mounting	51
Typf 480-B Relay Rack	146

I'ATENT NOTIGE. See Nutes $1,3,5,12,14,17,19$, $\mathbf{2 0}$, pugev.

TYPE 675-L PIEZO-ELECTRIC OSCILLATOR

This oscillator, used in conjunction with a Type .776-A or a Type 676-A Quartz Bar is the frequency-standard unit in the Class C-10 Standard Frequency Assembly. It includes an a-c power supply capable of supplying filament and plate power to a maximunu of three multivibrators.

Type	Cofe Word		Price
$675-\mathrm{L}$	\ldots	await	$\$ 315.00$

PATENT NOTICE. See Notes $1,3,12,14,17,111$, 10 , page v .

TYPE 692-A MULTIVIBRATOR

The multivibrator is used as a frequency divider and harmonic generator in General Radio standard-frequency assentblies. lt is available in stock for frequencies of 1 , 10 , and 50 kilocycles.

Type	Frequeney	Cole Word	Price
$692-\mathrm{A}$	$\mathbf{1 k c}$	STANFREANT	$\mathbf{\$ 1 4 0 . 0 0}$
$692-A$	10 kc	STANFREBOY	140.00
$692-\mathrm{A}$	50 kc	stanfrecat	140.00

PATENT NOTMCE. See Notte 1, page v.

VISUAL-TYPE FREQUENCY MONITOR FOR RADIO BROADCASTING STATIONS

This monitor is intended for nonitoring broadeast transmitters operating within a on-eycle frequency tolerince w heregoverument regulations require a vismal indication of the frequency deviation. It has been approved by the Federal Communications Commission (Approval No. 14.52) and is used in hundreds of stations in the United States and foreign countries.
The frequency indicator is a large meter with a range of -100 to $+\mathbf{1 0 0}$ cyeles. The monitor is a-c operated and consists of: Type 47is-A Frequency Monilor, TYpe 681-A Frequency Deviation Meter, and Type 376-1 (Quartz Plate.

Type	Code Wird	Price
Visual-Type Frequency Monitor...............	Devor	$\$ 560.00$

TYPE 475-A FREQUENCY MONITOR

Type 475-A Freguency Monitor is the reference standiard, detector, andio ampljfier, and a-c power supply for the visualtype frequency monitor described above. It can be used for monitoring by the audible beat method or, in conjunction with a Type 681-A or Tyre 68e-A Fre-
quency Deviation Meter, by the visual melhod. A Tyre 376 (h-L Quartz Plate is also required (sce page 50).

Tupe	Code W $\mathrm{W}_{\text {ord }}$	Price
475-A	mogul	\$330.00

TYPE 681-A FREQUENCY DEVIATION METER

This instrument consists of an adadio amplifier and a visual-type frequency meter. It is intended for use in monitoring radio brondeasling stations. The range is from - 100 cycles to +100 cycles, frequency deviation. Power supply is ob-
tained from the Tyre 475-A Frequency Monitor.

Type	Code Word	Price
681-A	Misos	\$145.00

TYPE 682-A FREQUENCY DEVIATION METER

A frequency deviation meter with two ranges, 1$)$ to 1000 eycles and 0 to 5000 cyeles. Power supply is obtained from the Tyme 475-A Frequency Monitor.

Type	Coule Ford	Price
682-A BATENT Norice. Sce Note 24, page v.	$\$ 145.00$	

CONSULT BULLETIN 11 FOR COMPLETE DETAILS

Tlie Typh 615-A Heterodyne Frequency Meter is an oscillating type of frequency meter designed for use in the measurement of frequency by heterodyne methods. Although its tuned circuit is subject to slight drifts in frequency due to temperature and aging effects, it can be checked against a local frequency staudard or standardfrequency radio signals for measurements of high accuracy.

It consists of a highly stable vacuum-tube oscillator and a detector. It is portable, operating from self-contained batteries, which are not supplied.

SPECIFICATIONS

Range: 275 to 5000 kc .
Accuracy; 0.2% if a correction is made for the difference between calibrating and operating temperatures.
Tubes: The necessary tubes are suppliet.
Power Supply: Self-contained batteries.
Mounting: Portable carrying case.

Dimensions: (length) $191 / 2 \times$ (width) $8 \times$ (heiglit) $13 \frac{1}{2}$ inches, over-all.
Net Weight: 34 pounds

Type	Code Wor	Price
$615-\mathrm{A}$	MANLY	\$375.00
FATENT NOTICE. See Noles 1, 3, page v.		

TYPE 675-H PIEZO-ELECTRIC OSCILLATOR

This oscillator is similar in general construction to the Type 67\%-L instrument described on page 46. The oscillator circuit, however, is designed for use at high frequencies as well as low and will operate at any frequency between 100 and 4000 ke, depending on the frequency of the Type 376 Quartz Plate used. An a-c power supply and two output amplifiers are included.

SPECIFICATIONS

Accuracy: Sce speceifications for Tyre 376-L Quartz Plate, page 50.
Power Supply: 115 volis, $50-60$ cyeles,
Mounking: Slandard 19 -inch relaty rack.
Dimensions: Panel, (width) $10 \times$ (height) $171 / 2$ incles. Behind panel, (depth) 103/4 inches.

Net Weight: aj 3 pounds,

Type	Code Ward	Price
675-H	Avoud	\$315.00*

* Price incluties vneumm tubes but doms not include quarts plate.

IATENT NOTICE, Sve Notes $1,3,12,17,19$, iv, page v.

TYPE 620-A HETERODYNE FREQUENCY METER AND CALIBRATOR

The Type 620-A Heterodyne Frequency Meter and Calibrator is designed for measuring high and ultra-high frequencies. It consists of a heterodyne frequency meter and a low-temperature coefficient piezo-electric oscillator.

The frequency meter fundamental is variable between 10 and 20 megacycles. This range is divided into ten parts, selected by a switch, and each band covers one megacycle. The frequency-control dial is culibrated directly in fractions of a megacyele. The fundamental frequency, in megacycles, is given by the sum of the coil switch reading and the condenser dial reading.

To measure frequencies below and above the fundamental range, harmonic methods are used. For checking the calibration, a strong crystal harmonic falls at cach end of the dial for cvery range, and weaker harmonics occur at intermediate settings.

A detector and audio amplifier are provided for obtaining beats.
A power supply, operating from a 115 -volt, 60 -cycle, a-c line, is included. Provision is also made for conncetions to battery supply.

SPECIFICATIONS

Frequency Range: The fundamental frequency range is from 10 to 20 megacycles, in 10 ranges of 1 megacyele each. By harmonie methods frequencics between 300 kilocyeles and 300 megacycles arc casily measured.
Calibration: The condenser clial is graduated to read fractions of megacyeles directly, the smallest division corresponding to 0.005 megacycle (5000 cyeles). Fifths of divisions are readily estimated, corresponding to 0.001 megacycle (1000 cycles).
Calibrator: A onc-megacycle piezo-electric oscillator, employing a low-tcmperature coefficicnt quarts plate, is provided for checking the calibration of the heterodyne frequency meter.
Accuracy: The over-all accuracy of measurement is 0.01% or better.

Power Supply: Either 105-185 volts 50-60 cyeles, or 6 and 180 volts de.

Power Input: 15 watts; from 115-volt 60-cyclesupply.
Mounting: The instrument is supplied either for relay-rack mounting or in a portable cabinet.
Accessories: A battery plug is supplied with the relay-raek model, a plug and cable with the cabinet model. All vaeuum tubes are supplied.
Dimensions: Rack-mounted model, pancl, (lengil $)$ $19 \times$ (height) $83 / 4$ inches; behind panel, (length) $171 / 4$ x (height) $88 / 8 \times$ (depth) $10 \frac{8}{4}$ inches; cabinet model, $20 \frac{1}{2} \times 141 / 2 \times 10$ inches, over-all.
Net Weight: Rack-mounted model, 40 pounds; cubinet model, 45 pounds.

Type	Deveription	Code Ward	Price
620.AR	Relay-Rack Mounting	daisy	\$490.00
620-AM	Cabinet Mounting.	babley	555.00

TYPE 376-L QUARTZ PLATE

This is a low-temperature-coefficient piezo-electric quartz plate for operation with a General Radio piezo-electric oseillator as a stambard of frequency in taboratory measurements or in a frequency-monitoring installation. Since the high order of frequency stability required in such serviees is not contpatible will high power output from the oseillator, the frequencies of all plates are guaranted for operation only at a low power level.

Type 376-L Quart\% Plates are not sokl for slirect frequency control of radio transmitters.

The frequency is adjusted very closely to the ortered frequency and it is guaranteed to be accurate to within a very few parts in a million. The accuracy is sufficient for monitoring any class of radio-telephone or -telegraph service, including broadeasting.

Al\} plates are manufactured from ligh grade, piezo-electric quartz, free from twinning. The plates are cut ly modern optical manulacturing methods, and the parallelism of the surfaces and their orientations with respect to the crystallographic axes are held to extremely small tolerances.

Type 376-I, Quarta Plate is so cut that the temperature coefficient is extremely low, being less than 3 parts per million per degree Centrigrade.

The General Radio Company's guarantec of ateuracy of frequenty becomes void when other types of holders or oseillators are used, or other temperature ranges are tolerated, than those named in the accompanying delailed specifications. This policy insures a known reliability of performance and permits a much closer necuracy guarantee than wond otherwise be possible.

The Type 376 Quartz Plate holder supplied is designed to maintain the greatest stability of the oscillator frequency. The holder is of the air-gap type, with a sealed electrode-spacing adjustment and an isolantite luse. The quartz plate is held securely so that changes in orientation or mechanical jars will not shift the frequency. The method of mounting allows the plate to vibrate freely bat restricts random motion or appreciable changes in position. The bolder is intended for use with the base in a horizontal position.

Two Type 274-P Plugs, set. on standard $3 / 4$-inch spacing, give plug-in moumting in General Radio oscillators or temperature-control boxes.

SPECIFICATIONS

Frequency Range: Plales can be made for any frequency in the range between 650 kc and 4000 ke .
Accuracy of Adjustment: The frequency of the plate is adjusterl until it differs in our laboratory from the ordered frequency by less than one cycle per second or 0.0001%, whichever is smaller.
Accuracy of Calibration: Alter the frequency of the plate has been adjusted as described in the preceding paragraph, the frequency is aceurately mensured in terms of stimdard frequencles from a General Raslio Class C-e1-H Standard-Frequency Assembly and the result of this measurement is entered in the calibration cerlificate.
Certified Accuracy: When operated under conditions specified in the calibration certificate, the accuracy is guaranteed to be within 0.002% (80 parts per million) of the trequency ordered for a period of one year.
Temperature Coefficient: Thic temperature coefficient of frequency is less than 3 parts per muilion per degrec Centigrade betwcen 20 degrees and 70 degrees
(688° and $158^{\circ} \mathrm{F}$) Centigrade.
Oscillator: Since the frequency and the frequency slability of a piezo-electric frequency standard depend upon the design and construction of the oseillator, the performance of all General Radio quartz plales is specified in a given type of oscillator.

The frequency is guaranteed in any General Radio piezo-elcetric oscillator designed for use with Type 376-L Quartz Plates. When other oscillators are used, the plate muss be calibrated in the oseillator with which it is to be used. Operating temperature and vollages are specified in the calibration cerlificate.
Mounting: The crystal holder consists of an isomantite base carrying an aluminum cap with a means for adjusting, locking, ant sealing the air gap. It is practically dust proof and is filted wilt plugs for use in General liadio piezo-electric oscillators.
Dimensions: Base, (length) $884 \times$ (witlh) $2 \times$ (height) $11 / 2$ inches, over-all.
Net Weight: 10 ounces.

TYPE 676-A AND TYPE 476-A QUARTZ BARS

These quartz bars are intended for use in standard-frequency assemblies. The 50-ke unit is supplied as standard equipment with the Class C-2t-II Assembly, and its use is optional in the Class $\mathrm{C}-10$ Assembly.
The mounting has been designed to have a minimum of effect on the fregutency of the bar. Electrodes are deposited directly on the quartz, thus eliminating the effect of air gaps. Baffles are provided to eliminate the effects of high-frequency sound energy radiated from the ends of the bar. The bar is zero-angle cot. The temperature coefficient is less than 9 parts per million per degree C.
The 100 -ke bar resembles the $50-\mathrm{ke}$ bar in general construction but the Type 476-A Quartz Bar is mounted in a plug-type case similar to the ones in which Type 376-L Quartz Plate is mounted.

A Tyre 476-P1 Adapter is required when a Type 476-A Quartz Bar is to be monnted in a Class C-10 or in a Class C-21-II Standard-Frequency Assembly.

Type	Frequency	Code Word	Price
$676-\mathrm{A}$	50 kc	PIEzOMUSHY	$\$ 145.00$
$476-\mathrm{A}$	100 kc	Mocha	95.00
476-P1	Adapter	ABAProncop	20.00

['ATENT' NOIICE. Set Notes 8, 1 , pate v .

TYPE 747-A TEMPERATURE-CONTROL BOX

This instrument is designed for use in controlling the temperature of quartz plates in order to assure constant frequency.

A terminal plate carrying two sets of jacks for Type 376 Quartz Plates is provided within the temperature-controlled space. The operation of a switch from the front of the panel connects either pair of jacks to the external connections, thus allowing quartz plates for two separate frequencies to remain at their operating temperatures and ready for immediateuse. Interleaved heaters and distributing and insulating layers formed of aluminum and balsat wood, respectively, form the walls of the temperature-controlled space. They maintain the air temperature of the quartz plate chamber constant to within $\pm 0.1^{\circ} \mathrm{C}$. for external temperature variations of $\pm 16^{\circ} \mathrm{C} .\left(\pm 29^{\circ} \mathrm{F}\right)$.

A thermometer, graduated in $0.5^{\circ} \mathrm{C}$. divisions from 40° to $60^{\circ} \mathrm{C}$., is mounted behind a slot in the panel and is illuminated by the heat-control indicating lamp. This thermometer indicates the air temperature of the inner space.

The thermostat is of the fixed mercury type and is normally supplied for operation at $50^{\circ} \mathrm{C}$. Thermostats for operation at other temperatures that are called for by the manufacturer of the quartz plate used can be supplied when ordered.

This instrument can be supplied mounted in a cabinet or on a standard 19-inch relayrack pancl. When supplied for relay-rack mounting, space is available at the right of the temperature-control box for the construction of oscillator circuits or for other associated circuit elements. The leads from the quartz plate are brought out at the righthand side of the box, making it convenient to attach leads to otfer circuits and at the same time reducing the length of leads necessary.

The power supply is a 115 -volt line, either ac or dc. A plug and cord for connecting the instrument to the 115 -voll line are provided.

SPECIFICATIONS

Accuracy of Temperature Control: The unit will control the temperature of the inner space to within $\pm 0.1^{\circ} \mathrm{C}$. for changes in room temperalure of $\pm 16^{\circ} \mathrm{C} .\left(29^{\circ} \mathrm{F}\right.$.). Where the crystal is operated at a power level so high that it gererates heat, the temperalure can be held to within the same limits if the heat generated by the crystal remains constant.
Operating Temperature; Normally $50^{\circ} \mathrm{C}$., but other temperatures can be supplied on special order.
Mounting: Two types of mounting can be supplied,
a walaut cabinet or a standard 19-inch relay-rack panel. (Sce price list below.)
Dimensions: Tripe f47-AM, (width) $181 / 4 \times$ (height) $115 / 8 \times$ (depth) $191 / 2$ inches, over-all.
Type 747-AR, (width) $19 \times$ (height) $101 / 2 \times$ (depth) 125% inches, over-all.
The inside dimensions of the temperaturecontrolled space are those of a $41 / 8$-inch cube.
Net Weight; Tyes 747-AM, $313 / 4$ pounds; Type: 747-AR, 99 pounds.

Type	Description	Code Word	Price
747-AM	Cabinet Mounting	BURLY	$\$ 150.00$
747-AR	Relay-Rack Mounting	BATHE

[^6]
TYPE 815-A PRECISION FORK

Type 815-A Precision Fork is designed for such uses as timing in geophysical exploration, in rating clocks and watches, in synchronizing facsimile transmission, and in low-frequency standardization. It combines high accuracy and stability with simplicity of construction and operation.

The fork is made of a low-temperature coefficient steel alloy. It is mounted at the heel on a metal panel which is attached to the main base by means of rubber shock absorbers to reduce energy dissipation through the mounting.

One microphone button is mounted on cach tine near the heel of the fork, where the amplitude of vibration is low. This minimizes the damping action which the presence of the microphones exerts on the fork. At the end of each tine, adjusting screws are provided. By means of these, the loading on the tines is equalized. This factor, too, is important in reducing the decrement.

Separate microphone buttons are used for the driving and output circuits. No output filter or transformer is included, since different uses may require different circuit arrangements.

A 50 -cycle model is carried it stock. Forks for other frequencies betweet 40 and 200 cycles per second can be built to order.

SPECIFICATIONS

Frequency: 50 cycles per second. Forks can, however, be supplied at any frequency bet ween 40 and 200 c.p.s.
Calibration: The frequency is adjusted within 0.005% of rated value. The calibration temperature is supplied.
Frequency Stability: The over-all stability is better than 0.01% under normal room-temperature conditions.
Temperature Coefficient: The temperature coefficient of frequency is negative and less than 10 parts per willion (0.001%) per degree \mathbf{F}.

Voltage Coefficient: The voltage coefficient of frequency is positive and less than 150 parts per million per volt (0.015%).
Power Supply: A 6-volt hattery is used as the driving souree. Driving curtent is less than 50 milliamperes.
Output: The power output is approximately 50 milliwatts. The imperlance of the output microphoue is $\overline{50}$ ohms.
Mounting: The fork assembly is momed on at metal base for table or bench use.
Dimensions: $15 \times 6 \times 3$ inches, over-all.
Weight: 8 pounds.

Type	Frequency	Price		
$815-\mathrm{A}$	50 cycles	Code Worl	FAUNA	$\$ 150.00$

TYPE 434-B AUDIO-FREQUENCY METER

The Type 434-B Audio-Frequency Meter provides a means of measuring, with an accuracy of 0.5 per cent, audio frequencies between 90 and 90,000 cycles per second. The circuit is that of the Wien bridge, which contains only resistances andeapacitances. This avoids themagnetie pickup which exists in frequency meters containing inductance and also makes possible the use of a logarithmic scale, obtained by suitably tapering the variable resistance elements.
The mull detector is usually a pair of high-resistauce head telephones. They are sufficiently sensitive to enable the dial to be set to 0.5 per cent with two volts imput to the bridge within the frequency range $300-3000$ cycles, if the waveform is pure. The dial may be set to 0.1 per cent by applying a higher voltage to the bridge or by using an amplifier such as the Trpa 814-A Amplifier between the bridge and the telephones. When the harmonic content of the supply is large, a low-pass filter, such as Type 830 Filier Sections, or a tuned circuit may be used for frequencies less than the natural frequeney of the telephones (about 900 cycles). The T'res $488-\mathrm{C}$ Output Meter, preceded by the Trupe 814-A Amplifier and a Type 830 Filter Section, may also be used as a mull detector.

SPECIFICATIONS

Frequency Range: 80 - 20,000 cycles in three ranges by means of a selector switell, $20-200$ eycles, $200-$ 2000 cycles, $2000-20,000$ cycles.
Calibration: Each inslrument is individually ealibrated in terms of a primary standard of freguency.
Accuracy: The null point is marrow enough so that, with sufficient supply voltage or sufticjent amplification on the null detector and with a lairly pure waveform, the dial muy be set to 0.1%. The calibration on the dial may be relied upon to within 0.5% at all positions.
Drive: The 6 -incli dial turns through an angle of 320° which gives a sale lenert of about 17 inties ior each 10 to 1 frequency range. The whole seale length is over 4 feet. The dial has a slow-motion drive.
Impedances: Input, 3-10 kilohms; output, 1-4 kilohms, the smalter values corresponding to the hither frequencies.

Input Voltage: 110 volis, meximum.
Accessories: A null detector will be required to operate the inslrument. This may be head telephones such as the Western Electric TYpe 100 Z - or an amplifier-meler combination surd as a Tyre 814-A Amplifice and a Tyre 488 Outpul Meter or a Tyue 726-A Thermionic Vollmeler, usen, in conjunction with Tyne s80 Filter Sections. Sven with head Lelephones an amplifier and filter seetions may prove usetul.
Controls: l'requency dial, range selector switch, resistance balance knob.
Mounting: Alumimum panel, $1 / 4$ inch thick, finished in black erackle lacquer, monnted in copper-lined walnut cabinet.
Dimensions: (INMgth) $19 \times$ (width) $88 / 4 \times$ (height) $81 / 4$ incles, over-all.
Net Weight: $151 / 4$ pounds.

Type	Frequency Range	Code Word	Price
$434-\mathrm{B}$	$20-20,000$ cycles	color	$\$ 140.00$

PATENT NOTJCE. Sve Noles 17, 18, page v.

TYPE 834-A ELECTRONIC FREQUENCY METER
 (A.C OPERATED)

The Trpe 834-A Electronic l'requency Meter fills the need for a general-purpose audio-l'requency meter with a pointer-type, direct-reating indication. The frequency is indicated ou a large panel-type meter, five full-seale ranges are provided, covering at range of from 0 to 5000 eycles. The range selection is made by means of a switeh. The accuracy of indication is two per cent of fall scale or better.

The electronic frequency meter is extremely useful in a frequency measuring system for rapidly determining beat frequeneies; in many types of audio-frequency measurement its immediate, divect indication is advantayeons; in the eflucalional field it can be used in classrom demonstrations of audio-frequency phenomena. Its industriad applications are mumerous, among them the tuning of automobile horns.

The instrument consists essentially of an electronic counter and an indicalor. When an alternating voltage is applied to the grids of the gas-discharge tubes, cach tube hecomes altermately conducting and norm-conducting. At each transition of the curcont from one tube to the other, a current pulse is sent through the indicator circuit. The meter reading depends upon the number of pulses per second, i.e, apon the fresueney.

The 'I'xpe 834-A Ehectronie Prequency Meter is designed for a-c operation and relayrack mounting.

SPECIFICATIONS

Frequency Range: 0-5000 cycles in five ranges. Fullscale values are $200,500,1000,2000$, and 5000 cyeles. Accuracy: 2% of full-seale reading or lether.
Stability: With the execepion of a drift of about 1% of full-scale reating in the first lew minules after starting, there is no material change in indication with time.
Input Impedance: 1 megolm, approximately.
Input Voltage: 2 volts, minimum; the imput woltage may be increased to 200 volts with no change in the frequency indieation.

Seale Adjustment: Independent idjusiment is proviled on each range. This adjustment is made at the factory, hat may be changed if eorrection is required in the lield.

Power Supply: 115 volts, 50 60 cycles.
Power leput: 45 watls.
Controls: Power supply on-orw switch; plate voltage adjustment; deionzalion swilch; multiplier (ramge selector) switch,
Meters: Plate vollage; frequency.

Tubes: Supplied with instrument.
1-76 amplifier
2-885 gus-discharge tubes
1-874 regulator
1-82 rectifier
1-8. diode switching
Mounting: Standard 19 -inch relay-rack moumting.
Unit fitted with dust cover.

Aceessories Supplied with Instrument: Vacuum tubes, fuses, and pilot lamps (with spares), 115-volt cord-aud-plug assembly, multipoint connector.
Additional Accessories Required: None.
Dimensions: l'unel, (width) $10 \times$ (height) $83 / 4 \times$ (depth) 12 inches.
Net Weight: 97 pounds.

| Tipe | | Code Norl | Price |
| :---: | :---: | :---: | :---: | :---: |
| 834-A | \ldots | nucus | $\$ 250.00$ |

PITEST NOTICE. Sue Notes $\mathrm{I}, 4$, , pige $\%$.

When driven by a stable oscillator, this device may be used as a source of precisely determined time intervals and, conversely, when its indication is compared with standard time, a measure of the driving frequency is obtained.

The Type 611 Synero-Clock is designed to operate from the output circuit of a low-power vacumm tube. The motor is of the impulse type and is brought up to synchronous speed by means of a 60 -cycle, 11 -volt motor. Clocks are normally supplied to keep true time on an exactly 1000 -eycle source. The micro-dial attachment consists of a rotary contact closing once a second, the instant of contact (or phase) being adjustable over a range of one second.

SPECIFICATIONS

Frequency: Clocks are normally supplied to keep true time when the frequency is exactly 1000 cycles. Power Consumption: One 41-type or 45 -type tube supplies sufficient power.
Mounting: Cabinet-mounted models (for usc on the laboratory bench) and pancl-mounting models are
available, but ouly the panel-mounting type with a micto-dial is regularly carried in slock.
Dimensions: Type 611-C, (width) $93 / 8 \times$ (depth) 6 x (height) 6 inches.
Net Weight: Tyre 611-C, 14 pounds.

Type	Description	Code Word	Price
611-C	Panel Mounting with Micro-Dial.	SYNCuOs000	\$220.00

The Type 794-A Wavemeter is a new instrument replacing the older Type 224. As a result of the redesign of coils, condenser, and resonance indicator, the new wavemeter has a wider frequency range and a greater sensitivity than its predecessor. The condenser is similar in constructional details to the Type 729 Precision Condenser described on page 30.

The condenser setting is indicated on the dial and drum and is controlled from the front of the panel. There are 7500 divisions for the entire 270 -degree angular rotation of the condenser rotor. The precision of setting is better than one part in 2.,000. The plates are shaped to give an approximately linear variation in frequency with seale setting, making it possible to use calibration charts in tabular form and to interpolate between points in the table.

Sever coils are used to cover a frequency range between 16 kilocycles and 50 megacycles. The coils are enclosed in moulded bakelite cases and are wound on isolantite forms to give low losses and a high degree of stability. The plug-in mounting allows the coil to be rotated to obtain different degrees of coupling.

The resonance indicator is a rectifier-type vacuum-tube voltmeter, a distinct advantage over the thermocouple formerly used, since the danger of overloads burning out the indicator is eliminated.

SPECIFICATIONS

Frequency Range; 16 kilocycles to 50 megacycles.
Accuracy: 0.25% between 50 kc and $50 \mathrm{Mc} ; 1.0 \%$ between 16 kc and 50 kc .
Calibration: The calibration is supplied in the form of a table of calibrated points. Linear interpolation between these points is used to obtain sethings for other frequencies.
Condensess: Precision worm-drive type similar to Tyre 728. Plates are shaped to give it straght-linefrequency characteristic. The effective angle of rotation is approximately 270°.
Inductors: Coils are wound on isolantile forms and
enelosed in moulded bakelite cases.
Resonance Indicator: A vacuum-tube voltmeter is used to indicate resonance. This is coupled to the tuned circuit through a capacitive voltage divider:
Mounting: A wooden storage case, fitted with lock and carrying handle, is furnished. This has compartments for holding the condenser, inductors, and calibration charts.
Dimensions: Carrying case, $177 / 8 \times 13 \times 121 / 2$ inches, over-all.
Net Weight; With carrying case, $3.51 / 4$ pounds; without carrying case, $183 / 4$ pounds.

Type	Frequency Ramge	Cade Word
$724-\mathrm{A}$	16 kc to 50 Me	Price
Woman	$\$ 190.00$	

TYPE 574 WAVEMETER

This direct-reading, tuned-circuit wavemeter is well adapted lor general purpose work in commercial, experimental, and educational haboratories. It is unusually compact, and its wide frequency range aud direct-reading feature make it useful for determining quickly the frequencies of tranmitters, receivers, and oscilators.

Its precision is adequate for most routine frequency measurements. Fiven in highprecision work the time-masting and bothersome process of locating an monown frequency on a precision wavemeter can often be simplified by first deternining the approximate frequency with the Type 574 Wavemeter.

The reaction method of indication should be used with this wavemeter, since no resonamee inclicator is provided.

SPECIFICATIONS

Frequency Range: 166 ke to $70,000 \mathrm{kc}$ (1800 meters to 1.3 meters), by using the five plug-in inductors supplied with the instrument.

Accuracy: The construetion and calibration of this wavemeter are suck that, if carefully made, mensureruents can be relied upon to within 9% of the indicated frequency.

Calibration: Each inductor is individually calibrated at five points in terms of the General Padio Company's primary standard of frequency, and intermediate points are secured by interpolation. The scales themselves are engraved on the inductors, thus making the instrument direct reading. Coil A
and Coil b are cngraved in units of megacyeles per second, others in kilocycles per second.
Condenser: A special Type 334 Variable Air Condenser modified by a reduction gear is used to spreard the calibration scale over approximately 345°. This facilitates precise settings. The condenser is driven by a slow-motion knob geared to the condenser shaft.
Mounting: The conclenser is mounted on a bakelite pazel attarhed to the polished walnut case, at one end of which is the storuge compartment for spare inductors which are leld in place by a spring clamp. Dimensions: (Length) $11 \times$ (width) $5 \times$ (heigh) $51 / 2$ inches, over-all.
Net Weight: $4 / 8$ pounds.

Type	Frequency Ranue	Equivalent Waulemgh Range	Code Word	Price
574	166-70,000 kc	1800-4, 3 meters	Caliky	\$50.00

TYPE 419-A RECTIFIER-TYPE WAVEMETER

The Type 419-A Rectifier-Type Wavemeter is a tuned-circuit instrument for general use in experimental work in the short-wave band between 1 and 15 meters. Provision is made for indicating resonance by means of a self-contained vacuum-tube rectifier which may be used in conjunction with either its micro-ammeter or a pair of telephone receivers. Any one of the numerous reaction methods may be used.

SPECIFICATIONS

Frequency Range: 300 Mc to 20 Mc or 1 meter to 15 meters by using the four plug-in inductors supplied with the instrument.

Calibration: Each inductor is indiviluatly calibrated with the greatest possible accuracy al several points in terms of the General Radio Company's pramary standard of frequency. Fach one is supplied with an individually mounter calibration curve waich relutes condenser scale divisions and frequency in megacyeles per second.

Accuracy: The construction and calibration of this waverseter are such that measurements, if carefully made, can be relied upon to within 1% of the indicated frequency.

Tube: The necessary tube is supplied.
Power Supply; Filament current for the tube is taken from a 1.5 -volt, No. 6 dry cell, mounting space for which is contained in the bottom of the cabinet. It is not supplied with the instrument.
Mounting: All equipment is carried on an aluminum panel finished in black crackle lacquer, which in turn is mounted on a polished walnut cabinet. The bottom holds the four inductors and their charts.

Dimensions: Panel, (height) $101 / 4 \times$ (width) $75 / 16$ inches. Case, (height) $7 / 4$ inches, over-all.
Net Weight: 7\%4 pounds with tube but without butter:

Type	Frequency Range	Equivalent Wavelength Ranps	Code Word	Price
419-A	$300-20 \mathrm{Mc}$	1-15 meters	cater	\$100.00

TYPE 358 WAVEMETER

Type 358 Wavemeter is a compact, low-priced instrument of moderate accuracy. It covers a wide frequency range and it is particularly well adapted to general purpose frequency checking in the laboratory.

The normal wavelength range of 15 to 220 meters (20,000 to 1364 kc) can be extended to 950 meters (315 ke) by ordering the two additional coils mentioned in the price list.

SPECIFICATIONS

Range: 15 to 220 meters ($20,000 \mathrm{kc}$ to 1964 kc). By ordering the two extra inductors* mentioned in the price list, the range can be extended to 950 meters (315 ke).
Accuracy of Calibration: 1\%. Calibrated in wavelength.
Condenser: Type 247 Condenser with slow-motion pinion-gear drive in drawn-steel case.
Inductors: Four, on bakelite forms, fitted with pins to fit condenser terminals.
Resonance Indicator: Small flashlight builb in special socket which closes circuit on removal of bulb.
Carrying Case: Space provided in wooden case for four inductors, condenser, and calibration chart.
Dimensions: Carrying case, (length) $113 / 4 \times$ (width)

$7 \times$ (height) $53 / 4$ inches, over-all.
Net Weight: $41 / 2$ pounds.

Tyye	Frequency Range	Code Word	Price
358	15 m to 220 m	UPrers	$\$ 17.50$
Additional inductors for extending renge to 950 m	*COLLY	12.00	

\rightarrow Use compound codc word uppercolly when wavemeter rith extril inductors is wanted.

OSCILLATORS

-(ㄹ)——(1)-(0)-
A.C OPERATED -

BATTERY-OPERATED
-
BEAT-FREQUENCY, TUNED-CIRCUIT, ANDELECTROMECHANICAL TYPES

TYPE 713-A BEAT-FREQUENCY OSCILLATOR

The usefulness of andio-frequency oscillators previously commercially available has been seriously limited by low power output which has necessitated the use of amplifiers.

In the Type 713-A Beat-Frequency Oscillator the power output has been increased to two watts, a gain of twenty timesover the highest power output previously available in a continuously adjustable audio-frequency oscillator manufactured by this Company. This output, with 130 volts on open circuit, is sufficient for testing many types of equipment and for molukting present types of standard-signal generators without additional amplification. This large increase in output power accompanies a marked improvement in waveform over the Type 513-B Beat-Frequency Oscillator which this instrument replaces.

In general design the Type 713-A Beat-Frequency Oscillator is an alternating-current-operated oscillator operating on the beat principle in which the output results from the beat between two high-frequency oscillators, one of which is fixed, the other continuously adjustable. A frequency range of 10 to 20,000 cycles is covered. The dial carries an accurate, individually engraved calibration. The calibration may be checked by means of a self-contained, calibrated tuned reed.

The distinguishing characteristic of a beat-frequency oscillator is its ability to cover continuously a wide frequency range with one control and, at the same time, to maintain approximately constant output. By means of such a circuit, the entire audiofrequency range may be covered by the rotation of a single dial. This feature renders the beat-frequency type of oscillator useful for the rapid study of all types of equipment.

The main dial is supplemented by an incremental condenser, calibrated over a range of -50 to +50 cycles, which facilitates accurate setting of frequency. It is also of
value in obtaining small pitch variations, as are frequently required in physiological and psychological studies.

The design of the instrument is such that the waveform and power outpat are ample for practically all experimental uses. When it is used in accordance with the operating instructions, the reliability of the frequency calibration is exedlent. Both oscillators operate near 180 kilocycles, and the circuits are adjusted so that the difference frequency may be reduced to 1 cycle without their "pulling into step" with cad other.

SPECIFICA TIONS

Frequency Range: Altlough calibrater hetween 10 cycles and 90, (H) cycles only, it will deliver power over a slightly wider range.
Frequency Control: The main control dial is engraved at least at every onc-hundred-cycle interval, the total scale length being approximately 18 inches. There is an additional ausiliary control covering a bant 50 cyeles wide on either side of the frequency determined by the selting of the main diat. This is usefat for making resonance curves, measuring pitch increments, and the like.
Frequency Calibration: A tuned $100-\mathrm{cycle}$ reed is provided to supply a checking point. In operation, the main tuming control is set to 100 cycles, and a zero-andusting comdenser is aldjusted until the oscillator freguency and the reed frequency are in agrecment, as shown by maximum deflection of the reed. The reetl adjustment is correct to within 1 cycle.

Each instrurnent is individually caljhrated, and the main tuning-control dial is then engraved
The auxiliary dial is marked with one division for every 1-cycle interval.
The calibration can be relied upon to within 2% after the oscillator has heen adjusted to the reed frequency at the 100 -cycle point, within one year from the date of purchase.
Frequency Stability; Great care in design has been taken to provide adequate thermal insulation intl ventilation, thereby practically climinating irequency drifts from this cause.
The frequency may drift 5 to 10 cycles in the first I wo hours from heating, but it is negligible thereafter in the absence of a marked change in room temperature. A 15 -volt change in supply voltage causes less than 1 cycle shift in output frequency. If the accuracy of the work justifies such a precaution, the oscillator may at any time be checked against the tuned reed.
Output: Maximum upen-circuit voltage is at least 130 volts; maximum power output is about 2 watts into a load of 2000 ohms. The output control is a

30,000 -ohen tapered vollage divider. Oulput voltage is measured by a linear-scale vacum-tube voltmeter.

For athy resistive loat the output voltage varies Iys less than $0.5 \mathrm{flb}(5 \%)$ between 90 and 10,000 eycles; less Hasn $1.4 \mathrm{db}(10 \%)$ between 10 anl 16,000 eycles.
Waveform: Will a 5000 ohm load at frequencies above 100 eveles, tolat harmonic content is less than 1% of the funclamental amplitude. At 10 cycles, barmonics are less than 5% (introduced by the iromcore onl phat transformer).

By throwing a switch on the panel, the output voltage is reduced to $1 / 10$ of its normal value, and the harmonic content is brought down to less than 1 \% over the entire range of the instrument. Powersupply ripple is approximately 0.1% on full output; 1% when the output volage has been redured by 10:1.

A means of checking the performance of the oscillator is provided so that improper load conditions, which would increase the hamonic content, cas be detected.
Power Supply: 100-120 volts, 40 -60 cycles, ac. The Fower consumption is about 85 watts.
Mounting: This jostrument is available in eitleer cabinet or relay-rack mounting. The cabinet is at beavy oak case fittel with carrying hanslles. For relay-rack mounting, the cahinet is replaced with a metal dust cover and shield.
Tubes: The necessary tubes, 3 type 41, 3 type 6Cf, 2 type 243, and 1 type 80, are supplied.
Accessories: 7-foot connecting cord is supplied.
Dimensions: Panel, (width) $19 \times$ (height) $941 / 4$ inches.
Over-all cabinct size, including bandles, (width) $201 / 2$ x (height) $25 \times$ (depth) 11 inches.

Screw holes in the panel are the standard spacing for mounting the instrument in a Type 480 (standard 19-inch) Relay Rack.
Net Weight: 87 prounds.

Type	Deseription	Cade Word	Price
$\begin{aligned} & \text { 713-AM } \\ & 713-A R \end{aligned}$	Cabinet Model Relay-Rack Model.	debar deter	$\$ 485.00$ 510.00

fatent notice. See Noles $3, \mathrm{~s}, 10$, page v .

OSCILLATORS

TYPE 613-B BEAT-FREQUENCY OSCILLATOR

This is a battery-operated instrument which possesses the desirable features of good waveform, frequency stability, and open scale which characterize the Type 713-A Beat-Frequency Oscillator previously described.

This oscillator is adjusted to the calibrated conditions by setting to resonance with a one-hundred-cycle tuned reed. The dial of each instrument is individually calibrated and engraved.

The Type 613-B Oscillator has been found especially valuable in physiological and psychological research at audio frecuencies. A useful accessory to the oscillator in this application is the Type 530-P Incremental-Pitch Condenser (see next page). This condenser is calibrated in single-cycle frequency increments and can be used to vary the output frequency repeatedly over any range of less than 100 cycles above the main dial setting.

The output has been carefully filtered to eliminate spurious high frequencies.

SPECIFICATIONS

Frequency Range: Calibrated between 10 cycles and 11,500 cycles, it will actually deliver power at frequencies slightly lower and higher, respectively, than these.
Frequency Calibration: A reference calibration is secured by setting the main tuning control to the 100 -cycle graduation, marked "reed," and then adjusting the compensating condenser until the calibrated tubed reed vibrates at maximum amplitude.

Each instrument is individually adjusted in terms of a primary standard of frequency to agree with the etched dial, and the dial of the main tuning control is then engraved. The dial is 6 inches in diameter and has a spread of 270° so that the scale is spread out over almost 14 inches.

For one year from the date of purchase, the calibration can be relied upon to within 2% after the oscillator has been checked against the 100cycle reed.

Frequency Stability: The Ligh-frequency oscilr lators are stable, and under uniform tewperalure conditions the beat frequency will stay within a few cyeles over a period of several hours. Clanges in ambient. temperature will cause slight changes in frequency because of the temperature coefficient of the tuned circuits. When a dritt in frequesey is obscrved, it can be corrected by readjusing for maximum amplitude of the tuned reed.
Output: The open-circuit output voltage does not depart by more than 50% from an averuge value of approsimately 16 volts over the entire frequency range. The maximum power outpul varies slighty with different instruments, but is approximately 15 milliwatus.

Internal Output Impedance: 5000 chms.

Waveform: On open circuit the total harmonie content is less than $\mathbf{q} \%$ of the fundamental above 100 cycles. With a 5000 -ahm lond it is less than 5% above 100 cycles; helow 100 cyeles it increases rapidly tis the frequency is reduced.
Controls: In addition to the main tuning control and the amiliary control for adjusting to the 100 -
cycle reference irequency, there are the output voltage divider and the filament and tuned-reed ox-ofr switches.
Meters: A filatuent volimeler and a detector platecurvent unter atre mounted on the panel.

Tubes: Three 30-type and one 31-type (RCA or equivalent) tubes are required and are supplied ats initial equipment.
Terminals: Two binding posts on the panel are provided for making connections to the oscillator.
Power Supply: Space for mounting three 45 -volt plate balteries and two No. 6 dry cells for filament supply is provided inside the cabinet.
Mounting: The instrument is monned on an thuminum panel finished in black crackle lacquer and contaned in a polished walnut enbinet with carrying laindles.
Dimensions: Panel, (width) $19 \times$ (height) $83 / 4$ inches. Cabinet, (width) $22 \times$ (height) $121 / 4 \times$ (depth) 9 inches, over-all.
Net Weight: $831 / 4$ poumds withoul batterics.

Type	Code Word	Price
$613-\mathrm{B}$	Naval.	$\$ 210.00$

PRTEN1 Notice. Sec Notes 1, 3, 10, 17, page \mathbf{v},

TYPE 539-P INCREMENTAL-PITCH CONDENSER

The incremental-pitel condenser is designed for use with Tyre 618-B BeatFirequency Oscillator. It is calibrated in divisions of one cycle over a 100 -cyele range. When the condenser is calibrated in conjunction with the oscillator with which it is to be used, the frequency can be changed by any desired mumber of cycles (less than 100) at any point on the oscillator diad.

When the Type 539-1 Ineremental-Piteh Condenser is ordered with a 'Iyps 613-B Beat-Freguency Oscillator, the necessary modifieations in the oscillator are made before shipment.

A "Returned Apparatus Tag" that may be secured on applieation must accompany the oscillator when it is retumed for the addition of a Type 539 - P Incremental-Piteh Condenser.

SPECIFICATIONS

Condenser: Identical in construction with Tyee 589 Calibration: 0 to 100 cyeles, frequeney increase Coulensers teseribed on page 33 .

Type	Description	Code Ford	Price
$539-\mathrm{P}$	\mid Incremental-Pitch Condenser $\ldots \ldots$.	aumr	$\mathbf{\$ 5 0 . 0 0 ^ { * }}$

[^7]
TYPE 377-B LOW-FREQUENCY OSCILLATOR

A TUNED.CIRCUIT OSCILLATOR COVERING A WIDE FREQUENCY RANGE

For certain classes of work, the tuned-circuit vacuum-tube oscillator is still preforred to the beat-frequency type. It covers, in general, a wider frequency range and has a greater percentage frequency stability at the lower frequencies. It suffers from the disadvautage of not being as easily set to a desired frequency.

Tyre 37r-B Low-Frequency Oscillator is it tuned-circuit instrument covering frequencies between 95 cycles and 70,000 cycles. It can also be furnished to operate at 10 cycles.

SPECIFICATIONS

Frequency Range: Any frequency hetween 25 cycles and 70, , 00 cycles can be obtained. The range can be extended downward to 10 cyeles for a small additional charge.
Power Output: At 10 ke and below, 50 milliwalts with one amplifier tube; 100 milliwatts with two amplifier tubes. Above 10 kc , the ontput is sub;stantially lower. It is aljustatle by means of a vollage divider. The internal output impedance with the voltage livider set for maximum output is approximately 2009 ohnes with two amplifier tubes ant 8500 ohns with one amplifier tube.
Waveform: The naximum larmonic content is about 3% of fundanental amplitude. Most of it is introduced by the amplifier.

This maty be reduced to about 1% ior loads of 8000 ohms or more by reducing the signal level applied to the amplificr. The method of doing this involves changing coupling resistars and is described in the instructions accompanying the instrument.
Golibration: A frequency ealibration for 50 points, scourate to within 1%, is supplied nith each instrment. The corresponding scttings of the condensers and the inductor switches are entered on
two charts. One is mounted inside the back cover, the other in an aluminum chart hotifer.
Frequency Stability: Chunges in tubes and operating voltages have a minor eficet on the frequency.
Mounting: All parts ate mounted on an engraved bakelite pancl in a heavy oak case with carrying handles and a cover. The case may be bolted to the wall, hinges allowing the cabinet lo swing out for replacing tubes, etc.
Terminals: All battery and output terminals are inside the case, whiel has holes in its side for the connecting wires.
Tubes: Two or three 112-A-type (RCA orequivalent) tubes are used, one as an oseillator and either onc or two as amplitiers. Tubes are supplied with the instrument as initial equipment.
Power Supply: 135 volls, 16 ma (plate) and 6 volis, 0.75 a (flament) are required to operate three tubes in addition to the grid-hiasing battery momed inside the case. Only the latter is included in the price of the instrument.
Dimensions: Cabinet witl cover, (width) $191 / 8 \mathrm{x}$ (hecight) $18 \times$ (depth) $101 / 2$ inches, over-all.
Net Weight; 55 pounds.

TYPE 508-A OSCILLATOR

A POWER SOURCE FOR AUDIO.FREQUENCY BRIDGE MEASUREMENTS

This is an a-c operated oscitator of medimm power, yielding ten freguencies separated by approximately equal percentage intervals to cower the more commonly used portion of the audio range. $\mathbf{J} t$ is intended primarily for use in bridge meastrements.
The output power is 0.5 watt and both frequency stability and waveform are good for an oseilhator delivering this power output. There is no direce current in the output cirenit.

Both relay-rack and cabinet models are avaibable.

SPECIFICATIONS

Frequency Range: The 10 frequencies available are $200,300,400,600,800,1000,1600,4000,3000$, and 4000 cycles. Selection is made by a single 10 -point switel. Frequencies between these values can be secured by the use of an external cordenser wheh can be plugged into the juch terminals on the panel at the left. For Irequencies between 250 eycles ant 4000 cyeles a Typre 819-G Ducarle Condenser with a Trpe 335-7 Variable Air Condenser is suitable. Between sot cycles and 850 cycles an additional 0.5 -, fondenser is required. These condensers are not supplied with the instrument.
Frequency Stability: Any frequency of this oscillator can be relied upon to remain eenstant to within 1% over a perion of several hours in spite of changes in load or line voltage.
Waveform: On open circuil, the total harmonic content of the output wave is less than 8% of the fundamental amplitude. This inereases as the load impedance is reduced, approaching a maximum of 11% when the ontput terminals are short-cirenited. The maximum open-cirenit hum volitite across the lerminals is 0.5 volt.
Frequency Calibration: Each instrument is adjusted
in our laboratory to within 5% of the frequencies engraved on the pand.
Outpuk: Alproximately 0.5 watt into a load of 2000 ohms. This maximum power oulput varies between approximalely 0.3 walt and 0.8 watt as the frequency is changed. A high-impedance voltage divider for adjusting the power output is ineluded.
Internal Output Impedance: 2000 ohms at maximuma oulput.
Vacuum Tubes: One $45-t y p e$ lube and one $80-$ type rectitier tube (RCA or equivalent) are supplien.
Mounting: 'Tlie oscillator is shielded and can be supplied rither in a walnut calbinet or will panel extensions for mounting on a 19 -inch relay rack.
Dimensions: For Type 508-AM: Panel, (width) $15 \times$ (height) $8 \% /{ }^{3}$ incles. Cabinet, (widhth) $18 \times$ (height) 10 x (lepth) $121 / 2$ inches, over-all.

For Type b0s-AR: (Width) $10 \times$ (height) $83 / 4 \mathrm{x}$ (depila behind pancl) 10 incles, over-all.
Power Supply: 100 to 120 -volt, 50 to tio-cycle line. The power drain is about to watts.
Net Weight: 38 pounds for Type mos-AAL and $801 / 4$ pounds for Trive 508-AR.

Type	Description	Code Word	Price
$\begin{aligned} & 508-A M \\ & 508-A R \end{aligned}$	Cabinet Mounting For Relay-Rack Mounting	ARROW ARSON	$\begin{array}{r} \$ 120.00 \\ 120.00 \end{array}$

TYPE 813 AUDIO OSCILLATOR

This instrument is a battery-operated electro-mechanical oscillator in which the frequency is determined by a tuning fork. Mechanically, the oscillator is simple and of rugged construction. Electrically, it has excellent waveform and frequency stability.

The driving and output circuits are independent and use separate microphone buttons, so located and mounted that the tines are equally loaded and the free vibration of the fork is only slightly influenced by their presence.

The fork is mounted rigidly at the hoel above a small metallie base panel which carrics the driving electromagnet located between the tines. The base panel is suspended internally with four resilient mountings beneath a bakelite panel, which carries the terminal posts and control switch and which serves as a cover for the walnut cabinet.

A filter is provided to eliminate harmonics from the output.

SPECIFICATIONS

Frequency: Two models are available, one operating at 1000 cycles and one at 300 cycles, hut special instruments can be coustrueled for any $1001-\mathrm{cyc}$ ce multiple between 800 cycles and 1500 cycles. Designs ate on tile; prices on request.
Frequency Stability: The temperature corfficient of frequency is -0.007% per degree F . The voltage coeflicient is less than 0.01% per volt. The frequency is entirely independent of loud impedauce.
Acturacy: The frequency is adjusted within 0.05% of its specified value. The actual frequency is measured and recorded on the base of the cabinet to an accuracy of 0.8%.
Output: The output to a matched load impedance is 90 to 50 milliwatts with 6 -voll drive and 10 to 15 milliwats witl $41 / 2$-wolt drive.
Internal Output Impadance: Three output imperlances of 50,500 , and 5000 ohms respectively are provirled.

Waveform: The total larmonic content is less Ilua 1.0% with $41 / 2$-voll drive and less than 1.5% with (1-voll drive.

Power Supply: For intermittent operation with a moderate power output, an interoal $41 / 2$-wolt battery can be used. For greater oulput or continuous opration, an exicrnall battery of $41 / 2$ to 6 volts should be used.

Terminals; Three binding posts for the power supply and four for the output circuit are provided on the panel.

Mounting: The fork is suspended from a metal plate on a bakelite panel and is enclosed in a walnut cabinet.

Dimensions: Both models, (lengtli) 3 x (width) 5 x (lieight) 6 inches, over-all.

Net Weight: 81/4 pounds.

Type	Frequency	Code Word	Price
$813-\mathrm{A}$	1000 eycles	ANGEL	$\$ 34.00$
$813-\mathrm{A}$	400 eycles	AMUSE	36.00

TYPE 484-A MODULATED OSCILLATOR

This is a portabie, generai-purpose, radio-frequency oscillator covering the wide range of frequencies so often required for the laboratory. It is modulated and sufficiently well shielded to perinit of its use in radio-frequency bridge-circuit measurements where the expense of a perfectly shielded standard-signal generator is neither necessary nor justifiable.

A straight-iine-frequency condenser driven by a precision dial is used for tuning. All inductors are plug-in and are stored in the drawer below the panel when not in use. Space is provided inside the cabinet for batteries.

SPECIFICATIONS

Frequency Range: 10 kc to 40 Me by means of ten plug-in inductors. In addition, two band-spread inductors are a vailable. Inductors are not included in the price of the instrument and must be ordered separately. See Type 184-P Inductors below.
Colibration: Calibrations are not included. On special order, however, a calibration curve accurate to within 1% ean be supplied for any inductor. (See price list.) Inductors must be calibrated in the oscillator with which they are to lee used.
Voltage Output: For frequeneies in the broadcast band and below, the maximum output is 2.0 volts. At higher frequencies the voltage progressively decreases until at the highest frequencies it is approximately 0.2 volt. Over the range of one coil the out put voltage varies by a ratio of approximately 1.5 to 1 , Modulation: Internal 1000 -cycle vacuum-tube oscil-
lator, providing approximately 30% modulation.
Tubes: Two 30-type tubes, supplied with the instrument.
Batteries: Two No. 6 dry eells and three 45 -volt Burgess No. 5308 batteries, or equivalent, are necessary. These are not included in the price of the instrument. Space for batleries is provided in the cabinet.
Mounting: The oscillator is assembled on a black craekle-finish aluminum panel and mounled in a shielded walnut cabinet. A drawer is provided for the inductors not in use.
Dimensions: (Length) $18 \times$ (depth) $141 / 2 \times$ (height) 123/4 incles.
Net Weight: 321/2 pounds, without batteries; $461 / 2$ pounds with balteries.

Type	Code Word	Price
484 A	crest	$\mathbf{\$ 1 6 0 . 0 0 ^ { * }}$

- Dues nat include batterjes or inductors.

PATENT NOTICE. See Notes 1,10 , page v.

TYPE 484-P INDUCTORS

SPECIFICATIONS

Dimensions: Type 484-P1 to Type 484 - 14 , (length) (length) $27 / 8 \times$ (width) $23 / 8 \times$ (heigint) $53 / 8$ ituches, $3 \times$ (diameter) $3 \frac{3}{4}$ inches, over-all Type 484-P21, inclurling plugs.

Type	Frequenoy Range	Vef Werght	Code Wort	Price
*484-P1	25 Mc to 40 Mc	6 ounces	MODOSCBIT(1)	\$8.00
*484-P2	9.4 Mc to 25 Mc	6 ounces	Monoscamsk	8.00
*484-P3	3.55 Mc to 9.4 Mc	9 ounces	MODOSCFOHI	8.00
*484-P4	1500 kc to 3550 kc	8 ounces	momoscelki	8.00
*484-P5	500 kc to 1500 kc	10 cunces	monosccoar	10.00
* 484-P8	160 kc to 500 kc	$71 / 2$ ounces	MODOSCAIMY	10.00
* 484-P9	60 kc to 160 kc	tiounces	MODOSCALLY	10.00
* 484-P10	27 ke to 60 ke	61/2 ounces	SOOLOSCEYRE	10.00
*484-P11	160 kc to 270 kc	9 ounces	MOnOSCHYM	10.00
*484-P12	$100 \mathrm{kc} \pm 2 \mathrm{kc}$	9 ounces	Monoscmilk	10.00
*484-P13	15 kc to 27 kc	7 ounces	MODOSCITCH	10.00
* 484-P14	10 ke to 15 kc	7 ounces	MODOSCONLY	10.00
484-P21	400.Cycle Modulating Unit	$38 / 8$ [20unds	MODOSCPALM	12.00
	Frequency Calibration (per Inductor)		Culzve	5.00

 cthive, ste.
1PATENT NOTICE, See Note 1 , page v.

1000-CYCLE BRIDGE SOURCE

Vibrating-reed type, carbon-bulton drive from 4.5 volts. See the description of the Typs 572-T3 Microphone Hummer, page 137.

TYPE 814-A AMPLIFIER

This is a general-purpose laboratory amplifier intended for use where high gain is required over the audio-frequency range. Since the instrument is operated entirely by dry batteries, the output is free from hum. The cabinet is karge enough to acommodate all necessary batteries so that the unit is entirely self-contained and readily portable.

An amplifier of this type is extremely valuable for bridge measurements. The high gain increases the sensitivity of a pair of ordinary headphones by nearly 80 db at 1000 cycles. The logarithmic gain control provides a conveniert means of acjusting the amplification to a satisfactory value. Provision is made for plugging in ant -resonant tuncd circuits across the coupling circuit between the second and third stages of amplification. This gives a simple and effective means for restricting the amplifier response to a narrow range of frequencies, thas eliminating harmonics and noise when balancing a bridge.

In designing this amplifier, it was considered more impertant to have high gain over the audio-frequency range than to have an alssolutely flat characteristic over an extremely wide range. The gain is practically constant between 20 and 10,000 cycles and the amplifier is still usable at frequencies tp to 50 ke although the characteristic is not flat.

SPECIFICATIONS

Amplification: The gatn of the amplifier :hroughout the greater portion of the audio-frequency range is approximately 90 db when operating into a high impedance (1 megohm or mone) such as a vacuum* tube voltmeter or a cathorle-ray oscillograpls. When operating into a 20,000 -olm load such as, for instance, a Type 483-C Output Meter, the gain is approximately 77 db . About this same amount of
gain is secured a: 1000 cycles when operstiug into an average pair of telepiones.

The above figures for gsint in the an:plifier represent merely voltase ratios and do not take into account the fact that the input impodaze of the amplifier is generally considerably hisher thnn the load impedance connected to the amplifier. Naturallv, an input transformer greatly increases the
sensitivity in cases where the amplifier is operating from a low impedance. Carc must be tuken, however, to see that the transformer does not introduce undesirable hum pickup, ctc.
It is also possible to increase the sensitivity in many cascs by using an output iransformer for matching the oulput cireuit to the load. Bccause of the high gain of the amplifier, however, it is seldom necessary to use either input or output transformers in order to obtain satisfictory sensitivity.

Frequency Range: From 20 cycles up, the gain of the amplificr is practically constant throughout the audio-frequency range, dropping approximately 4 db at 10,000 cycles. The amplifier has sufficient gain at higher frequencies to be useful for many purposes. For instance, when operating into 1 megohm the maximum ghin at 20 kc is slightly over 80 db , and nt 50 kc , it is abont 65 db .
input Impedance: In order that the amplifier may be used directly from conventional types of piezoelectric microphones or vibration pickups, tle resistance leak in the input cirenit has been mode 5 megohous, The actual input impedance, accordingly, consists of this leak in parallel with a shunting capacitance. This capacitance amounts to approximately $35 \mu \mu \mathrm{f}$ when the 1 Nu ur vor.tage is on the low position. When this switch is set on the ruan position, the effective shunting capacitance is reduced to approximately $92 \mu \mu \mathrm{f}$. A series capacitance of 0.02 $\mu \mathrm{l}$ is providerl in the input cireuit so that the application of a direct voltage to the input terminals will not affect the operation of the amplifier.
Much of the input capacitance is caused by the binding posts, the capacitance of the input condenser and switeh to ground, etc. For applications where an extremely low inpul capacitance is desirable, it is possible to connect directly to the grid cap of the input tube, removing the grid elip and thus disconnecting the standard input cireuit.
Output Impedance: The output impedance of the amplifier is approximately 70,000 ohms. A blocking condenser of 1μ f is included in scries with the output terminals so that no direct voltage appears on these terminals

Tuning: A jack marked " F " is provided on the panel and connects directly to the grid of the output tube. An anti-resonant circuit may be connected to a standard telephone plug and inserted in the circuit at this point, thus modifying the gain of the amplifier by the frequency-selective characteristics of the tuned circuit. The aetual impedance of the interstage conpling cireuit is roughly 200,000 ohms, which should be taken into consideration when designing suitable anti-resonant circuits.

Tubes: The auplifier requires three 34-type tubes, which are incluled in the price of the instrument.

Power Supply: Batterics are supplied. The following baticries are furnished for the Type $814-\mathrm{AM}$ Amplifier: two 1.5 -volt No. 6 dry cells or equivalent, three 45 -volt batteries (such as Burgess No. 5308 , Evcready Type 762) and one Large fashlight cell. In cases where light weight is of unusual importance, Burgess No. Z30X 45 -volt or other portable type batteries may be used in the cubinct-mounted model in place of the larger batteries listed above.

For use with the relay-ruck mounted Tyre 814-AN the following latteries are used: two Burgess No. 4 FA (Little 6's) or equivalent, three Burgess No. Z30P 4ö-volt batteries or equivalent and one Burgess No. 2FBP 1.5 -volt battery or equivalent.

Mounting: The amplificr is supplied in two types of mounting. The Tyee 81-AM Amplifier is mounled in a walnut cabinet having space for batteries. The Type 814-Al Amplifier is provided with a panel extension for relay-rack mounting. This panel extension includes battery space and provision is made for mounting a rectifer-type meter.

Dimensions: Panel size, (width) $12 \times$ (height) 7 inches. Cabinct size for Type 814-AM, (width) 15 x (height) $81 / 4 \times$ (depth) $121 / 4$ inches, over-all. Size for Type 814-AR, (width) $19 \times$ (height) $7 \times$ (depth) 10 inches, over-all.

Net Weight: Type 814-AM, 173/4 pounds; necessary batteries, approximately 14 pounds. Trpe 814-AR, 13 pounds; necessary batterics, approximately $71 / 2$ pounds.

Type	Description.	Conde Worl	Price
814-AM 814.AR	Cabinet Mounting. For Relay-Rack Mounting	$\begin{aligned} & \text { APRELE } \\ & \text { ALONE } \end{aligned}$	$\begin{array}{r} \$ 97.50^{*} \\ 97.50^{*} \end{array}$

*Price inchudes both tubes and batleries.
PATENT NOTICE. See Note 1, page y

TYPE 714-A AMPLIFIER

Type 714-A Amplifier is a high-gain, wide-range, a-c operated instrument designed mainly for use with cathode-ray oscillographs. It can also be used as a bridge amplifier and for muny other purposes where a high voltage gain is desired. When used with a Type 687-B Electron Oscillograph, equivalent deflection sensitivities as great as one hundred inches per volt can be obtained without appreciable distortion.

The maximum gain of 80 db is obtained with an extremely low hum level, equivalent to approximately 10 microvolts on the grid of the first tube. Full output can be obtained with any input voltage between 10 millivolts and 10 volts. Microphonic effects are minimized by the use of indirectly-heated-cathode tubes, and the amplifier is actually quieter than many battery-operated amplifiers of equal gain.

The circuit is of the resistance-capacitance coupled type using three pentode tubes, thus providing high amplification over a wide range of frequencies.

The frequency range of 5 cycles to 50 ke makes the amplifier extremely useful as a general-purpose laboratory instrument, particularly in low-frequency work. The power supply filter has been carefully designed to prevent self-oscillation at low frequencies and to insure stable operation. The same model can be used for either table or relay-rack mounting.

SPECIFICATIONS

Gain: The gain is continuously adjustable bet ween 20 db and 80 db , by meaos of a gain conlrol and a switch. With the switch set at 50 db , the range of the gaiu control is from 20 to 50 db ; with the switch on 80, the range is from 50 to 80 db .
Frequency Characteristics: The gain at 5 cycles and at 50 ke is down 3 db from the flat portion of the characteristic.
Maximum lnput Voltage: 14 volts, maximum peak; 10 volts rms on a sinusoidal wave.

Maximum Output Voltage; 140 volis, maximum peak; 100 volts rms on a sinusoidall wave.
Load Impedance: Although the internal output imperdance is about 20,000 ohms, the load resistance should not be less than 100,000 ohms for an undistorted output of 100 volts. As a bridge null detector this is not important and maximum power gain will be obtained into a load of about 20,000 ohms. One out put terminal is grounded.
Input Impedance: The input resistance is over one

AMPLIFIERS

Frequency eharaderistic of a Type $714-\mathrm{A}$ Amplifiet

This plot shows both the gain and the improvement in the frequency claracteristic which result when the TYpe 714-A Amplifier is nsed with a pair of head telephones. Since, in balancing bridges, the threshold of hearing determines the sensitivity, this quantity is used as the ordinate of the plot
megolim. The shant capacitaner is about $15 \mu \mu \mathrm{f}$ with the gain switch on 50 ald about $40 \mu \mu \mathrm{f}$ with the switch set at so.

Power Supply: 110 to 120 volts, 40 to 60 cycles, a-c: mains

Power Consumption: 25 watts.
Vacuum Tubes: Two 6C6, one 89 and one 80, all of which are supplied with the instrument.

Mounting: Wooden ends are used for table nounting and are removable if the amplifier is to be used on a relay rack.

Accessories Supplied: Vacnum tubes, 7 -foot power cord, and spare pilot light.
Dimensions: (length) $19 \times$ (depth) $101 / 2 \times$ (height) 7 inches, over-all.
Net W/eight: 40 pounds.

Type	Conde Word	Price
714 - A	aural	\$190.00

Patent Noticl. See Note 1, page y.

TYPE 650-A IMPEDANCE BRIDGE

A bridge capable of measuring resistance, inductance, and capacitance over wide ranges and which is always set up and ready for operation is a valuable instrument in electrical laboratories.

The Type 650-A Impedance Bridge is entirely self-contained, including standard and tone source, and is direct reading over wide ranges of d -c resistance, a-c resistance at 1000 cycles, capacitance and dissipation factor $\left(\frac{R}{X}\right)$ at 1000 cycles, and inductance and energy factor (Q) at 1000 cycles.

Results are read directly from dials having approximately logarithmic scales. The position of the decimal point and the electrical unit in terms of which the measurement is made are indicated by the positions of two selector switches.

Resistances are measured in terms of a standard resistance arm, reactances are measured in terms of a mica condenser standard, similar in construction to the Type 505 Condensers. The accuracy of calibration of the dial on which inductance, resistance, and capacitance are read is 1 per cent. This dial may be set with a precision of 0.2 per cent. The over-all accuracy of results is 1 per cent for capacitance and d-c resistance, \% per cent for inductance. The smallest measurable quantities are 1 milliohm, 1 micromicrofarad, and 1 microhenry. Power is supplied from four No. 6 dry cells which operate a 1000 -cycle hummer for a-c measurements. The bridge may also be used with an external generator of any audio frequency.

The particular value of this bridge lies in its complete availability and the speed with which it can obtain such information as the inductance and energy factor of coils, the range of tuning condensers, the capacitance and power factor of filter condensers, and similar information which is often suddenly required in the course of other work.

The simplicity of operation of this bridge can best be judged from an inspection of the panel. The power supply for the self-contained tone source is in the compartment
at the rear of the sloping panel. The actual balancing is done on two dials. In impedance measurements the main dial at the right balances for reactance, and one of the three smaller dials at the left balances for resistance. In resistance measurements only the main dial requires adjustment to obtain bridge balance. The two knobs at the top extend the ranges of the balancing dials by the decimal multiplying factors indicated on the engraved sectors. The bridge dials are direct reading, and the balance is indicated by telephones for the to00-cycle measurements. A galvanometer for d-e balances is ineluded on the pancl.

SPECIFICATIONS

Range: The ranges of the: instrument are givers in the following lable. The mumerical values are the readings af the calithrined dials multiplied by the seltings of the decade selector switches.

	Mimimbim	Moximmm
Resiatance	1 milliolım	1 megolim
Capracitance	1 mieronicrofarad	$\begin{aligned} & 100 \text { nicro- } \\ & \text { fariads } \end{aligned}$
Iruluctance	1 microhenry	100 lenrys
Dissipation Factor ($\frac{\mathrm{N}}{\mathrm{N}}$)	.013)	1
Energy Factor ($\frac{\lambda}{R}$ or Q)	. 07	1000

Accuracy: The large direct-reading dial covers two decades, the main decade being spread out over 12 inches (three-quarlers of the dial). It may be get to 0.2%.

Aecuracy of reallugs for capacitance and d-c resistance is 1% for the intermediale multiplier decades; for inductance, 2%. The acenracy falls off in the lower ranges because of the extromely small values to be measured. It decreases to 5% for very large values of capacitanceand d-e resistance, and to 10% for large values of inductance.

Accuracy of rearling for dissipation factor or for energy factor in terms of its neciprocal is either 20% or 0.005 , whichever is the harger.

The frequency of the microphone humber is 1000 cycles lo wilhin $\pm 5 \%$.

Extemal Generator: l'rovision has been made for using an exterual generator, although its capmeitance to gromud may- introduce sone error. Sulject Io this fimitation, the frequency may be varied over a wile range from a fen cycles to 10 kc . The reading of the main dial is indeperdent of frequency, while the readings of the energy and dissipation factor dials nust be mulliplied by or divided by the generator frequeney in kilucyeles to give the correct values. Provision is made for alding external resistance if it is necessity to increase their ranges.

Power Supply: Pour No. 13 dry cells tor the d-c measurements and for driving the mierophone hummer are required, and space for them is provided in the cabinel. Bat leries are not supplied with the instrument. A lighier dee vollage may be combeted to lie bridge for hightresistance measurements.
Other Accessories Required: Head telephones; Western Electric No. 1008-C are reconmented. To incrase the sensitivity, a Tines 814-A Amplifier may be used.
Mounting: Black crackle-finish athminum panel mounted in a slifielded walnut cabinet.
Dimensions: (Width) $12 \times$ (rlepth) $20 \times$ (height) $81 / 2$ inches, over-all.
Nef Weight: 89 pounds withont batteries; $801 / 2$ pounds with batteries.

- Willant baiteries on lelephiones.

PATENT NOTICE, See Note 17, Image v.

TYPE 716-A CAPACITANCE BRIDGE

A capacitance brdge is most valuable when it has selfecontaned standards and is direct reading in the quantities which it measures. Considerable time is saved by the elimination of calibration charts, calculations, and connection of an external capacitance standard. This gain is the more importart if at the same time acemacy is not sacrificed.

The Type 716-A Capacitance Bridge meeis these requirements to an umisuad degree. It is direct readirg in capacitance over the range from $100 \mu \mu \mathrm{f}$ to $1 \mu \mathrm{f}$ and in power factor up to 6 per cent (0.06 expressed as a ratio) at a frequency of 1 kilocycle. Its accuracy is $\pm 2 \mu \mu \mathrm{f}$ or ± 0.2 per cent for the reading of the standard condenser and ± 0.0005 or ± 2 per cent (of dial reading) for power factor.

The wide capacitance range is obtained ty providing four sets of ratio arms giving multiplying factors from 1 to 1000 in decade steps. The standard condenser is a Type 722 Precision Condenser calibrated to read directly in total capacitance. The capacitance across the unknown terminals is not greater than $1 \mu \mu \mathrm{f}$. All capacitances to ground of the input transformer and ratio arms are removed from the capacitance arms by placing therm in a shielded compartment insulated from the gromnded panel and connected to the junction of the ratio arms.

Power lactor is rad directly in per cent from the setting of a Type 539 Condenser connected across the fixed ratio arm, as is the practice in the Schering bridge. Its 12 -inch scale is approximately logarithmic, so that, while having a maximum reading of 6 per cent, its smallest division near zero is 0.01 per cent, thus allowing the estimation of 0.001 per ceut. The accuracy of the power factor reading over such a wide capacitance range is made possible by adding capacitance across the lower valued ratio arms, so that the product $R C$ of all the arms is the same.
For the measurement of capacitances of less than $100 \mu \mu \mathrm{f}$ and for greater accuracy, substitution methods may be adopted. Terminals are provided so that the unknown
condenser may be connected in parallel with the standard condenser. Capacitances of less than $1000 \mu \mu \mathrm{f}$ may be measured to an accuracy of $\pm 2 \mu \mu \mathrm{f}$ or ± 0.2 per cent. The fixed error may be reduced to $\pm 0.2 \mu \mu \mathrm{f}$ by the use of a worm correction calibration of the standard condenser.

External standards, precision air condensers and standard mica condensers, may be used in the substitution method by connecting them and the unknown condenser to the unknown terminals. The internal standard then acts merely as the balancing condenser. It is, however, in this respect equivalent to a three-decade mica condenser because of the unequal ratio arms. An external decade resistor may also be used to supplement the power factor dial.

The Type 716-A Capacitance Bridge can be used for a wide range of power factor measurements. It will measure directly the power factor of paper condensers having eapacitances from $100 \mu \mu$ to $1 \mu \mathrm{f}$ and all other condensers whose power faclors are between 0.1 per cent and 6 per cent. This range will inchude many samples of sohid dielectries in the form of dises or flat plates and liquid dielectrics when used in large cells. It will measure by the sulstitution method the power factor of condensers, fixed units, and solid and liquid samples, having capacitances less than $1000 \mu \mu$ f, and power factors greater than 0.005 per cent. This range includes mica and air condensers and all dielectric samples for which gitard circuits are not needed. Approximately equal condensers having capacitances greater than $1000 \mu \mathrm{f}$ may be compared to an accuracy of $\pm 0.2 \mu \mu \mathrm{f}$ or ± 0.02 per cent in capacitance and 0.00005 or 2 per cent in power factor. This allows the accurate adjustment of condensers to a definite standard, the sorting of groups of condensers, and the intercomparison of primary and secondary standards.

The bridge may be used at frequencies other than 1 ke over the audio-frequency range from 60 cycles to 10 kilocycles. Since the reading of the power factor dial is propertional to frequency, other means for providing the necessary resistance batance, such as a series decade resistor, must be used at both extremes of frequency.

The generator may be connected to the bridge either across the ratio arms through the shielded transformer, which steps up 1 to 4 , or between the junction of the ratio and capacitance arms. The voltage applied to the bridge is limited in the former case to 100 volls and in the latter case to 700 volts when the ratio arms are equal.
The bridge is furnished for mounting with its panel vertical on a standard relay rack, upon which may also be mounted the oscillator and amplifier. With no change in shielding, it is also furnished mounted in a walnut cabinet.

SPECIFICATIONS

Ranges: Direct Reading - capacitance, $300 \mu \mathrm{f}$ to 1μ; power factor, 0.002% to 6%; (0.00001 to 0.06 expressed as a ratio).

Substitution Method-capacitanec, 0.7 mel to 1000) $\mu u f$ with internal standard; to $1 \mu \mathrm{f}$ with ex ternal standard.
Accuracy: Direct leading - capacitance, $\pm 0.2 \%$ or $\pm 2 \mu \mu \mathrm{x}$ multiplier reading; power factor ± 0.0005 or $\pm 2 \%$ of dial readiug.

Substitution Method - captecitance $\pm 2 \mu \mu \mathrm{f}$ or $\pm 0.2 \%$; power factor, $\pm 0.0000) 5$ or $\pm 2 \%$ for change in power factor observed.

Ratio Arms: The arm across which the power factor condenser is cunnected has a resistance of 20,000 ohms. The other arm has four valucs, 20,000 ohms, 9000 ohms, 200 ohms, 20 ohms, providing the four multiplying fuctors $1,10,100,1000$. Suitable condensers are placed across these arms, so that the product $R C$ is constant.

Stondards: Capacitance, Tyre 7a9 Precision Condenser direct reading from $100 \mu \mu$ fo $1100 \mu \mu$; power factor, Type 580-T Condenser calibrated directly in power fartor at 1 kc with semilogatillmic scale.

Shielding: Ratio arms, power factor condenser, and shielded transformer are enclosed in an insulated shield. The unknown terminals are shiclded so that the capacitance across them is not greater than $1 \mu \mu$ f A metal dust cover and the aluminum panel form a complete external shield.
Frequency Range: All alibmaion idjustments are mate at I he and the accuracy statements ahove hold for an operating frequency of 1 kc . The bridge
 cyeles and 10 ke . Power lactor readings must be correcten by multiplying the dial reading by the fiequency in kilocycles.
Voltage; Vollage applied at the genelatoh termitals is steppeal up hy a $1-10-4$ ralio shielded transformer. A nuximum of 2.5 volls can be applied to the transformer. If desired, power can be applied to the Dridge between the , iunctions of the pairs of
resistatuce and capacitatice arms. With equal ratio arms, a maximum of 700 volts can be applica.
Mounting: The bridge is mormally supplied for monting on a 19 -inch relay rack. Cabinet mounting tait also be supplied
Accessories Required; Oscillator, amplifier, atal telephones or reelifier meter. Oscillators are listed on pages $8 \mathbf{0}$ to 70. Type 814-A Amplifier (sec page ${ }^{7} \mathrm{~F}$) is recommetsed.

For substilution measurements, a bataneing condenser is needed. This may be either an air dielectric model, suel as Trpe z+i-L and Type 5is9-C, or a fixed mica condenser of the Type 50.3 series.
 9 inches, over-till
Net Weight: 41 pounds, relay-rack model; 52 pounds, cabinet moclel.

Type	Description	Code Word	Price
716.AR	For Relay-Rack Mounting	bonus	\$335.00
716-AM	Cabinet Mounted	нояом	360.00
PATEV'I NOTICE. See Note 1 \%r, prige v.			

TYPE 516-C RADIO-FREQUENCY BRIDGE

While bridge methods have been standard practice for direct-curent and andiofrequency measurements, bridge circuits suitable for use at high frequencies have not been available. Beyond a vagnely defined limit of about 50 kc , volt-ammeter and resonant methoxls have yielded somewhat ambiguous results, and there has been a need of some more satisfictory measurement means at these frequencies.
The Typz $516-\mathrm{C}$ Radio-Frequency Bridge makes possible the measurement of imperance up to a frequency of about 5 megacycles.

The most important single development in connection with the bridge is that of the constant-inductance decade resistor. This device permits compensation of the residaal inductance in the resistance arm by means of a constant inductame in an opprite arm, and results in a resistance arm which can be changed in balancing the bridge without introdacing any change in the inductance or capacitance relation.

The Tyre 5i6-C Bridge is direct reading up to 110 ohms and $1150 \mu \mu \mathrm{f}$. For the measurement of inductance or of higher vaitues of capacitance, a smatl fixed condenser may be placed in series with the unknown. When the resistance of the unknown is above 111 ohms a parallel condenser or a combination of series or parallel anits can be selected to produce a balance. While in neither of these cases is the bridge direct reading, the necessary calculations are not difficult. The substitution method for aparitance and resistance measurements is recommended where precise results are desired. When the hridge is used as a direct-reading instrument, some acenacy is sacrificed. The overall accuracy ohamable is, however, extremely good in the range where the bridge is direct reading. Fven at frequencies in the vicinity of 5 Mr, the direct-reading accuracy is about 5 per cent. At broadeast frequencies it is about 1 per cent.

A particularly important application of the bridge is in the measurement of antenna characteristics. The bridge method has several advantages over resistance-substitution or resistance-variation methods. These include low power requirements with a general simplicity of the apparatus and procedure. Other types of measurement conveniently made with the bridge include freguency characteristics of radio-frequency coils and dokes, and inductance and power-factor measurements on all classes of impedance at high frequencies

The accuracy, wide range, and ease of operation of the Type 516-C Radio-Frequency Bridge make it the most satisfactory device available for radio-frequency impedance measurement. It should be emphasized, however, that the bridge requires an appreciztion of the fundamental problems involved in high-frequency measurement on the part of the user if erroneous results are not to be obtained. Stray capacitance, the reactance of leads, and contact resistance, factors which are negligible at lower frequencies, are often an appreciable part of the impexance measured at radio frequencics. A recognition of the importance of these factors is necessary to a correct interpretation of the results. In the laands of those possessing experience in the technique of high-frequency measurements, this bridge will fill a long recognized need and will give dependable and accurate results.

SPECIFICATIONS

Capacitance Range: Main dial, $40 \mu \mu{ }^{\prime}-11.50 \mu \mu$ i; vernier dial, $\pm 0.1 \mu \mu \mathrm{C}-10 \mu \mu{ }^{\prime}$. The range can be extended indefnitely by using a series condenser.

Resistance Range: 0.1 ohtn to 111 ohms. The range can be extended indefinitely by using a known condenser in parallel with the unknown.

Power-Factor Renge: 0.005% to $\mathbf{3 \%}$ at 1 Mc .
Frequency Range: 500 kc to 5000 kc with output transformer furnished. With suitable output transformers and ratio arms (see below), range can be extended down to include audio frequencies.
Accuracy: As a direct-reading bridge, $\pm 5 \mu \mu f$ or $\pm 1 \%$ at 1 Mc for measurements of capacitunce, $\pm 0.2 \Omega$ or $\pm 2 \%$ for resistance, and ± 0.001 or $\pm 5 \%$ for power factor. With substitution methods, greater accuracy can be obtained.

Accessories Recommended: The bridge is supplied with 100 -ohm ratio arms and a $516-\mathrm{P} 10$ output transformer for the $500-\mathrm{ke}$ to 5000 -ke band. A suitable radio-frequency generator and delector are required.

$T_{\text {Vpe }}$	Conde trord	Price
516-C	batch	\$225.00

I'ATENT NOTICE. See Notes $9,10,17$, mge v.

ACCESSORIES FOR TYPE 516-C RADIO-FREQUENCY BRIDGE

By changing the ratio arms and shielded transformer, the frequency range of the Type 516-C Radio-l'requency Bridge can be extended downward to frequencies as low as 60 cycles. For a discussion of low-frequency measurements with this bridge, see the General Radio Experimenter, Vol. X, No. 10, March, 1936.

Ratio arms and transformers for frequencies other than 1 Mc are listed below. The resistance of the ratio arms is chosen to make the power-factor dial read correctly at the frequency specified.

Transformers are fitted with plug bases to fit the jack plate in the bridge.
For frequencies below 150 kc , the TYpe 814-A Amplifier (page 71), used with a luned circuit, and the Type 726-A Vacuum-Tube Voltmeter (page 116) are recommended for use as the bridge detector.

RATIO ARMS FOR TYPE 516-C RADIO-FREQUENCY BRIDGE

Type	Resistance	Frequency	Conde Word	Price
516-P9	10 n	10 Mc	adaptorant	\$6.00
*516.P3	100Ω	1 Mc	ADAPTOBETG	6.00
516.P4	$1 \mathrm{k} \Omega$	100 kc	adartorpig	6.00
516-P5	10 k ®	10 kc	ADAl'tortoe	6.00
516-P6	100 k ת	1 kc	ADAPTORTOF	8.00
516-P7	1667 k Ω	60 c	adaptoniz	15.00

SHIELDED TRANSFORMERS

Type	Frequeney Range	Code Worl	Price
$* 516-\mathrm{P} 10$	$500 \mathrm{kc}-10 \mathrm{Mc}$	ADAPTORWAY	$\$ 8.00$
$578-\mathrm{AR}$	$50 \mathrm{e}-10 \mathrm{kc}$	TABLEMOINT	20.00
$578-\mathrm{BR}$	$20 \mathrm{c}-5 \mathrm{kc}$	TENORAOUNT	20.00
$578-\mathrm{CR}$	$2 \mathrm{kc}-500 \mathrm{kc}$	TEPIDMOUNT	20.00

TYPE 667-A INDUCTANCE BRIDGE

The problem of the accurate measurement of small inductors having low Q at audio frequencies, such as are used in increasing numbers in modern radio receivers, has not been satisfactorily met by the standard types of bridge circuits which have been available.

Their measurement, when made on the usual type of bridge, is subject to three sources of error: the sliding zero balanee occurring when two inductors having energy factors (Q) between 0.1 and 10 are compared, the inductance variation of any decade resistor altered in either arm, and the energy factor of the resistance in any bridge arm because of capacitance in parallel with it.

All inductance bridges have been subject to one or more of these errors, but they have been negligible in measurements of large inductances of relatively small resistance. When dealing with small coils of low Q, however, they may cause errors of several per cent in the measured result.

In the usual inductance bridge the balances for resistance and inductance are not independent. The final balance point, therefore, is not unique and can be recognized only after comparing a succession of balances, i.e., a sliding zero balance is encountered. In the Type 667-A Bridge this difficulty is eliminated by placing a small variable inductor in series with the unknown inductance, thas allowing an inductance balance which is entirely independent of the resistance balance.

An inductance-compensated resistor (similar to Type 670 Compensated Decade Resistor) is used to eliminate the effect of reactance changes when obtaining the resistive balance. The constant residual inductance of the resistance decades is compensated for by a small change in the standard inductor. The result is a bridge that has independent balance for resistance and inductance, is capable of measuring inductance with an accuracy of 0.1 microhenry, and which is direct reading.

Terminals are provided so that the bridge may be used as a resonance bridge for measurements such as the ratio of a-c to d-c resistance. The d-c resistance can be determined on the bridge by using a battery and galvanometer in place of the usual a-c generator and detector.

Using a substitution mellod of measurement, inductance standards between 1 millihenry and 1 henry can be intercompared to an aconracy of 0.0 per cent.

SPECIFICATIONS

 This imfuctance may bee associated with a value of O as low as 0.00 al l ke.

Accuracy of Measurement: laductances tan he mensured at a frequency of I ke with an acentacy 01 0.2% or 0.1 microhenry, whicheser is the larger. For measurements will the multiplier set at "x 1000 ," the aceratacy is 0.4%
Frequency Range: The frepurney ratige evtends from no cyrles tu 10, dom cyulen when proper power source aud null detector are used.
Ratio Arms: One ralio arm consixts of 4 values: 1 olim, 10 ohins, 10 ol olms, or 1000 obins. The other arm is a continnously adjustable lecate resistor of 111 ohms. The self-contaned inductance stamdard
is a I-willihenry toroid wound on an isolanlite form. The resistance standard is a compensated decade resistance with a range of 0 to 111 ohms.
Shielding: The cabinet is completely shielted and the bridge arms are slijelled from each other. The input transformer is completely shielaled.
Accessories Required: Power supply - General Ratio Twe 50s-A Oscillator reommended; ampli-fier-General Radis Typs 814-A recommemed; liend telefhones.
Mounting: The insirument is supplied in eahine mounting only.
Dimensions: (Lenglit) $17 \frac{1}{2} \times$ (width $) 16 \times$ (leight) $91 / 2$ inclies.
Net Weight: $3105 / 8$ prounds.

Type	Conde IIOnd	Price
667-A	afilie,	\$395.00

TYPE 544-A MEGOHM METER

Convenient portable instruments have not previously been available for the direct measurement of high resistances. The equipment available has involved either a sensitive detector in the form of a wall galvanometer, or a high impressed voltage taken from a hand-cranked generator. The application of vacuum-tube methods to this problem has resubled in a materially simplified device. The Typf.544-A Megohm Meter consists of a resistance bridge laving a vacmu-tube voltmeter as the mull detector.

The sensitivity is sufficient so that the iudicating meter miy toe a pointer-type gatvanometer. The bridge is balanced by means of a togarithmically tapered rheostat. calibrated directly in megolms over two decades from 0.1 megohm to 10 megohms. The larger decade from 1 megohm to 10 megohms covers three-quarters of the dial, or 534 inches, and provides approximately constant fractional aceuracy of reading. Five multiplying factors ($0.1,1,10,100$, and 1000) are provided by a switch which varies the resistances in two arms of the bridge in decimal steps. The complete range of the bridge is six decades from 0.01 megohm to $\mathbf{1 0 , 0 0 0}$ megohms, with a total scale length of 44 inches.

This range of resistance covers most of the high resistances met with in practice. All grid leaks and coupling resistors for vacum tubes may be measured. The insulation resistance of all low-voltage electrical apparatus, such as molors, transformers, and heating devices; of sufficiently long lenglths of high-voltage cables; of paper condensers; and of slabs of most insulators may be determined. The extremely long scale allows the effects of temperature and lumidity on insulating materials to be studied.

SPECIFICATIONS

Range: 10,006 @ to $10,000 \mathrm{M} \Omega$ covered by a djel and 5 -position multiplier switch, Resistances up to $100,000 \mathrm{Ma}$ cons be measured by indirect methods.
Accuracy: To within 3% helwem $14,000 \Omega$ and $100 \mathrm{M} \Omega$ and to within 5% between $130 \mathrm{M} \Omega$ and $10,000 \mathrm{M} \Omega$.
Diad: The a-decate dial is individually engravedOver the main decarle, the scale is approximately logarithmic, thus giving constant fractional aceuracy.
Null Indicator: Balame is indicaled b; the zero-center galvanometer on the panel.
Tubes: One 32-type, supplied with the instrument.

Power Supply (60 -cycle ac): A Type 544-P1 Power-Surpply Unit that

Extraneous Voltages: 'The megohim meter operales to lest advantage on resistors across whici there are neitlier a-e nor d-e woltage drops. The effects of constant amplitude a-c voltages up, to ahout 10 volts, rms, and steuly d-c voltages up to ahout 0.5 volt can be allowed for, bul erratic voltage varialions and vollages grouter than those mentioned above render the instrument inoperative.
Power Supply (Batteries): Fifament, two No. 6 dry tells. Plufe, two 45 -volt block batteries, Burgess No. 5308 or erquivalent. Space for mounting all bat leries is proviled iusile the cahinet. Connections are made by a 7 -prong plug and coded cable supplied. Batteries are not supplied with the instrument.
fits the battery comparlment can be ordered separately to supply both plate and filment power from it 115-volt line. The one 8 -type: tube, one 874 -type tulbe, and the line cord required are suppliced. Poner Consumption, ubout 44 watts. Dineasions, $73 / 4 \times 78 / 8 \times 51 / 2$ inches. Net Weight, $91 / 4$ pounds. (bee price list helow.)

Mounting: Mounted in shiekderl oak cahinet.
Dimensions: Cabinet with cover closed, (width) s $1 / 2$

Net Weight: $153 / 4$ ponnds without batteries or TYpe ath-P1 Power-Supply Uuit; $261 / 2$ pounds with batteries; 25 pounds with TyיE 544 -1’ Power-Supply Unit.

Ty/e	Descripion	Cote Word	Price
$\begin{aligned} & 544-A \\ & 544-P 1 \end{aligned}$	Megohm Meter Power-Supply Unit	aloof ADOGFAPACK	$\begin{array}{r} \$ 165.00 \\ 35.00 \end{array}$

TYPE 293-A UNIVERSAL BRIDGE

The Typa 293-A Universal Bridge is designed to present a fondamental circuit which may be connected to produce a wide variely of standard direct- and alternatingcurrent bridges. The instrument consists of three resistance arms and a terminal board by means of which the various circuits can be set up with plugs and jacks. The bridge arrangement permits the measurement of inductance, capacitance, and resistance over a wide frequency range ($0-50,000$ eycles). It can also be set up as a frequency meter. The instrument has, therefore, a much wider general usefulness in a college or measurement laboratory than the usual form of permanently connected bridge circuit.

The resistance arms of the bridge consist of two similar arms, each having a total resistance of 11,110 ohms in four decade dials ($1,10,100$, and 1000 ohms), and a third arm having resistances of $1,10,100,1000$, and 10,000 ohms.

The bridge elements are shown diagrammatically in the accompanying drawing, which illustrates the points in the circuits where terminals are Iocated. The bridge circuit is shown connected for the standard Wheatstone bridge. The dotted lines are

Schematic diagram of it Tree 29s-A Lhiversal Bridge set up for measuring resistance
connections made by means of the plug connectors on the terminal board. The plags are arranged in two groups, each
group terminating elements of one side of the bridge. The plug arrangement permits the connection of additional elements in series with any of the bridge arms. The input and output (power and null detector) circuits can be brought ont directly or through transformers for which plug-in jacks are provided.

When used for resistance measurements no additional standard is required, the S arm of the bridge being used as a standard. For inductance and capacitance measurements, an external standard is required. The bridge does not include a null detector or power supply.

SPECIFICATIONS

Bridge Arms: The A ant! B arms each consist of four clecade resistors covering an range of 1 chim to 11,110 ohms in 1 -ohno steps. The S arm is a resistor with 1 -, 10 -, 100 -, 1000 -, and 10,000 -ohn sections, The characteristics ate similar to those of the Trepe 608 Demade-Resistance Box.
Accuracy: All resistors are aljusted to willin 0.1% of the specified walue except the l-ohm units which are adjusted to within 0.2:\%
The ahsolute accuracy of measurement, of course, will depend upon the accurncy of the standard.
Frequency Range: The bridge can be used at all frequencies from direct curront up to 50, e00 cycles.
Shielding: 'Ilhe cahinet is copper lined, and the A, B, and S arms are slicelded from each other. The pranel is sliefied over the A and B arms.

Accessories: To facilitate making the connections required by this flexible bridge, there are supplied with each instrunent 10 double plugs, Q double shieded connector cords, and 2 sinfte cords.

For suggestions as to the choice of suitable standards, sources of power, and null indicators, consult. the section on bridge acecssories, page !s, Shielded input and output transforners and Tyre pos-P3 Slide-Wire Resistors are described below.

Dimensions; Pancl, (widllu) 151/2 x (depth) $143 / 8$ inches. Cabinet, (height) $8 / 8$ inches, over-all.

Net Weight: 21/2 pounds.

Type	Cade Word		Price
$\mathbf{2 9 3 - A}$	\ldots	日ACON	$\$ 140.00$

TYPE 293-P ACCESSORIES

In using the Type 295-A Bridge for alternating-current measurements, shielded input and output transformers are desirable. The following transformers are available and are satistactory for measurements in the audio-frequency range. Both transformers can be used with either coil as input or output.

When the impedance under measurement is low, it is desirable to extend the range of the bridge arms downward. This may be done by the use of one or two Type 293-P3 Slide-Wire Resistors, a shielded resistor cabibrated directly and having a range of 0-1.3 ohsu. The slide-wire calibration is accurate to 0.02 ohm at any setting. The unit is arranged for plug mounting on the bridge terminal board.

Type	Turns Ratio	Inductance High Side	Freguency Range	Circuit Impedance		Net Weight	Code W゙ord	Price
				High Side	Low Side			
293-P1	3:1	2. 5 h	50-5000 cydes	270082	30010	g lh.	badge	\$19.00
293-P2	2.55:1	95 h	$50-5000$ cycles	25,000 Ω	4000 a	2 lb .	baffy	12.00
293-P3	Slide-V	Resistor,	-1.3Ω			8 oz.	baggy	20.00

TYPE 561-C VACUUM-TUBE BRIDGE

An important group of measurements ordinarily taten by means of bridge methods is that of the dynamic chameteristios of vacuum lubes. These parameters, amplification constant, mutual conductance, and plate resistance, change under the influence of clectrode potentials, and the ramer in which these changes take place determines the usefuiness of the tube for many applications. Woth the tube and set manufacturers require a simple and accurate means of obtaining data on these characteristics. Tree $561-\mathrm{C}$ Vacuum Tulbe Bringe is designed for these measurements.

The procedure in makiag measurements is simple and straightforward, and is exactly the same for the three coefficients: amplification factor, plate resistance, and transonductance. A three-position switeh is turned to whirhever quantity is desired, mulliplier switches are set at the appropriate value for the tube being tested, and balance is obtained by adjusting a three-decade attenator and a variable condenser. At balance the decades read directly, to three significant figures, the quantity being measured.

The three main tube parameters are measured independently, i.e., none of the balances depends in any way on any other so that independent cross checks can be obtained from the known relationship among the three corfficients. Negative values of the tube coefficients may be measured as readily as positive values.

The bridge embodies new measuring cirenits and it more satisfactory method of balancing out the effects of the tube inter-electrode capacitances than has heretofore been available. Not only is the accuracy of the measurement thereby considerably
improved, but all three of the usial parameters may be measured independently over a much wider range. For instance, the mutual conductance of a tube having a high value of grid to plate capacitance can be messured without any error from this capacilance.

The measuring circuits and the tube-control circuits may be separated by opening link commectors on the lop of the panel. This not only liacilitates the testing of tubes associated with other control apparatus, but also makes it possible by changing the cross connections in a very simple mamer to measure grid-circuit parameters, or parameters referred to any pair of electrodes.
The tube circuits have large enongh current-carrying capacity and sufficient insulation so that low-jower transmitting tubes may be tested in addition to receiving tubes.

SPECIFICATIONS

Range: Amplification ficcor (μ); 0.001 to 10,000
Dymamic internal plate resistance $\left(r_{p}\right)$; 50 ohms to 20 mogohoms.

Mutual conductance $\left(s_{m}\right)$; 0.09 to 20,000 micromhos.
Under proper comititions, Ite above ranges can be rexeeded. The various parameters can also be measured with requect to variods elements, sum as screen grids, ete. Negative, as well is fositive, values calu be measured.

Range of Tubes Covered: All standard folar-, five-, six-, and seven-prong recoiving tubes cath be masured on this instrument without the use of addapters, except that five-, six-, or seven-prong tubes not having separtate liealers rexpire the use of at single
 bridge. Aswita his provided for aviteling the controlgrid counection from the hase to the eall.

An octal adapter is :also supplied, by means of which all octal-base tubes, either glass or mertal, an be tested with any desired connections to the - lectrodes.

The Universal Anapler supplied permits the Lesting oll tubes with nom-stionfard base connections. Utimounted tuhes are ronnected directly to the panel binding posts for test measurements.

The tube cirenits have large enongh enrrentcarrying capacily and sufficient insulation so that low-power tratsmilling lubes may be tested in addition to receiving tubes. Maximum allowathle plate current is lan milliampres and maximum wale voltage is 1500 volls.
Filament Supply Circuits: A slouble-range rectifiertype allernating-current and direct-corrent filament voltmeler and a sombee of alternating-currethe leater power are contajned in the inslsumenk. Noextermal filanent connections need be mate for atternating-
eurrent tulos, unless voltage greater than 8 volts or curment greater than 3.5 sumpres is required. The filament rherstat for direct-eurreat filament supply lass a cmpacity of 750 milliamperes.

When measuring alternating-current heated tubes, Hue bridge requires monection to at somese of 11 asvoll, fo-cycle altermating current.

Electrode Voltage Supply: Balleries or suitable power supplins are becessary for proviting the varions vollages retuired by the tube under test.

Bridge Source: A source of 1000 cycles is refpired The TYes sos-A Audio Oscillator is suitable for this ригрове.

Null Indicator: A suitahle muld indicitor is required. The There 81-4-A Amplitier used in conjuction with a sensitive pair of telephones is recommented for this purpose.

Constructional Features: The lower lall of the Iront panel of the instrument contaiss the special bridge cireuit nsed in meakuring Hee confficients. The upper half of the panel contains tube sockets, alternating-courent filament supply, filament vollwelor, rheostats, terminals tor various voltares, and termimals for direct connection of an external tube to the bridge cirenil. This arrangement provides the greatest flexibility for general use.

Mounting: The instrument is mourted on a blatek crackle lacquered alumimum patuel and is furnished in a polished walnut gabimel. A leatherelte cover is supplied to protect the instrument from dust when not in use.

Dimensions: (length) $183 / 8 \times$ (widh) $103 \times 4 \times$ (height) 11 inches.

Net Weight: 4.5 pounds.

TYPE 625-A BRIDGE

This instrument consists of a skeleton bridge circuit, of which one arm contains a 10,000 -ohm direct-reading logarithmic rheostat, and the other three arms are brought out to pairs of terminals on the panel, making provision for plugging in standard and unknown units to obtain a variety of circuits. A 1000 -cycle a-c voltage source is contained in the bridge. When assembled with the properstandards this bridge substantially duplicates the Type 650-A Impedance Bridge in performance.

SPECIFICATIONS

Range: With the recommended accessories the ranges are: for resistance, 1 milliohm to 1 megolm; for capacitance, 1 micromicrofarad to 100 microfarads; for inductance, 1 microhenry to 100 henrys.
Accuracy: The accuracy of results depends upon the type of standards used. With the accessories recommended, an accuracy of 2% for measurements of inductance, capacitance, and d-c resistance can be oblained. The accuracy of the component parts of the bridge itself is 1%. The frequency of the microphone hummer is 1000 cycles to within $\pm 5 \%$.
Power Supply: Two $41 / 2$-volt batteries (Burgess No. 2970, Eveready No. 711, or equivalent) for the d-c messurements, and for driving the microphone hummer, are required, and space for them is provided in the cabinet. Batteries are not supplied with the instrument. An external a-c voltage source having any frequency up to 5000 cycles may be used.
Accessories Recommended; In addition to head telephones for arc measurements and a zero-center, $200-\mu \mathrm{a}$, full-scale galvanometer for d-c measurements, purchase of the following units is recommended if the full range is to be covered. Omission of some items is possible if narrower ranges are satisfactory.

Resistors
1-Type 500-A 1Ω
1-Type $500-1310 \Omega$
1-Type 500-D 100Ω
1 -Type $500-\mathrm{H} 1000 \Omega$
2-Type 500-J $10,000 \Omega$
1-Type 5af-B Mounled
Rheostat and Potentj-
Condensers
1-Type 505- F e. $001 \mu \mathrm{f}$
1-Type 505-L $0.01 \mu \mathrm{f}$
1-Type 625-P1 1- f
Condenser
(Adjusted to withir $\pm 2 \%$. Dimensions: $83 / 8 \mathrm{~s} \frac{1}{5}$ $51 / 8$ inches, over-all. Not Trejght: 4 punces.) ometer required for Dissipation and Energy lactor Measurements.
Mounting: This instrument is assembled on a bleck crackle-finish aluminum panel and mounted in a shielded walnut cabinet. A drawer in the lower part of the cabinet provides space for storing the standards suggester.
Dimensions: (Width) $9 \times$ (depth) $13 \times$ (height) 7 inches, over-all.
Net Weight: 9 pounds without batteries; 11 pounds with batteries.

Type	Description	Code Word	Price
$\begin{aligned} & 625-\mathrm{A} \\ & 695-\mathrm{P} 1 \end{aligned}$	Bridge $\begin{aligned} & \text { - } \mu \mathrm{f} \text { Condenser }\end{aligned}$	beach baize	$\begin{array}{r} \$ 65.00 \\ 2.00 \end{array}$

PATENT NOTICE. Sece Nole 17, page v.

TYPE 578 SHIELDED TRANSFORMER

This is an audio-frequency bridge transformer having two shields, one around each winding. The shields are separated by an ari gap.

The primary and secondary windings have less than $0.3 \mu \mu$ direct intercapacitance and hence will isolate a bridge from changes of electrostatic potential in the generator circuit. At the same time the correct connection of the shields places a capacitance of only about $30 \mu \mathrm{f}$ across either the monnown or the standard arm of the bridge in exchange for the large generator-to-ground capacitance that normally exists. The iron core laminations are effectively grounced by means of a copper shield.

The wide frequency range and the fact that the same transformer may be used in either direction adapt this transformer to the requirements of a large proportion of a-c bridge measurements.

A diseussion of the characteristies and uses of these transformers appeared in two issucs of the General Radio Experimenter-April, 193.4, and October, 1935. Copies will be sent upon request.

SPECIFICATIONS

Type	Frequency Range	Impedance Range	
		Primary	Secondary
$\begin{aligned} & 578-A,-A R,-A T \\ & 578-B,-B R,-B T \\ & 578-C_{i},-C R,-C T \end{aligned}$	50 cycles to 10 ke 20 cycles to 5 kc 2 ke to 500 ke	50Ω to $5 \mathrm{~K} \Omega$ 60Ω to $6 \mathrm{~K} \Omega$ 20Ω to $2 \mathrm{~K} \Omega$	$1 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$ $1 \mathrm{~K} \Omega$ to $190 \mathrm{~K} \Omega$ $4 \mathrm{~K} \Omega$ to $40 \mathrm{~K} \Omega$

Ratio: The transformer has a turns ratio of $4: 1$. It may be used in either direction.
Frequency and Impedance Range: See table
Capacitance: The direct capacitance between primary and secondary windings is less than $0.3 \mu \mu$; that between the primary and secondary stields is less than $30 \mu \mu$ f.

Shielding: Each winding is separately shielded, and a third shield effectively grounds the core laminations.
Mounting: Three types of mounting are available: (1) mounted in a Model B case (see page 141) with windings and both shiedds brought out to soldering lugs; (2) same as (1) with a plug base for nse in

Type shli-C Radio l'requency Bridge; (3) mounted in elamps with no externat shield, leads terminated on soldering lugs. This model is lor use where extermal stheding is provided by the user. All three types are illustrated on page 91.

Dimensions: Dimensions for Model B case are given on page 14]. The over-afl height of -k models is $53 / 8$ inches, including plugs. Dimensions For -T morletrare $28 / 4 \times 28 / 4 \times$ (height) $57 / 8$ inches, over-ill. Net W/eight: -R morels, $28 / 4$ poumals; atl ot hers, $21 / 2$ pounds.

Type	Mounting	Conde Wort	Price
578-A	Model 13 Case	pabie	\$15,00
578-B	Model 13 Case	Tevoh	15.00
578-C	Mondel B Case.	tepid	15.00
578-AR	Plug-in for Type si6-C Redio-Frequeney Bridge	TABLGMOCNT	20.00
578 -BR	Plug-in for Type 516-C Radio-Frequency Bridge	tenommount	20.00
578-CR	Elug-in for Type $516-\mathrm{C}$ Radio-Frequency Bridge	Trisimmonet	20.00
578-AT	Without case, in clamps	TAhumplace	12.50
578-BT	Without case, in clamps.	teniofleate	12.50
578-CT	Wiltout case, in champs	thipliplace	12.50

TYPE 610-A RATIO-ARM BOX

A ratio-arm box is a suitable muckens around which to design any bridge circuit. It contains a pair of ratio arms giving ratios from 0.001 to 1000 in twel ve sleps. The swithes as well as the individual precision resistance cards used in the ratioarm box are similar to those employed in the Type 602 Decade-Resistance Box. (See description on pages 12 and 13.)

SPECIFICATIONS

Resistances: Each arm, 1, 3, 10, 30, 100, 390, 1000 olims.
Type of Winding: Ayrton-Perry, manganin wire.
Accuracy: Correct at box terminals to within 0.25% for 1 -ohm anil 0.1% for other unjts, respectively.
Switches: TY'E 510-P'I, 7-point. Enclosed contarts.
Mounting: Switches and terminals nounted on
blach cractile-finish aluminem panel and enclosed in a sliedted walnut rabinet.
Terminals: Jach-top hinding posts with separale groutud terminal.
 inches, over-all.
Net Weight: $5 / 8 / 8$ pounds.

Type	Corte Wiond	Price
610-A	habid	\$32.00

BRIDGE ACCESSORIES

All bridges require for their operation a power source, a null indicator, and comparison standards. Other acressories are transtormers for matching the impedances of the power source and null indicator to the bridge, amplifiers, filters, Wagner gromel, gatyanometer shunt, and separate ratio arms. These accessories are listed in this section with a brief discussion of their relative merits and a relderence to the section where they are fully described.

POWER SOURCES

For simgle-fequency metsurnuents, Trie 813-A amd Typer 8ts-B Audio Oscillaturs will le fonmal satisfactory; lior mesurirements at a number of fixed irequencies, Tipe 508-A Oscillator is recommended:

Trope 713-A or Trie (i13-1 Beat-Frequency Oscillator sbould be used where the opersting l'equency must be conlimously arljustable.

Ty/f	Freguency	Prwer Onipur	Patte	Prine
813-A	1000 cyeles	20 mw.	(is)	\$ 3.34 .00
813-B	400 excles	20 mw .	68	36.00
508- 1	$\int 200,3001,400,800,800,1000$, ($1600,20061,3000$, and 20000 ycles)	0.5 watt	${ }^{6} 7$	120.60
71:-A	10.30,000 cyckes	2 watls	6	185.101
613-13	10-11,504 cyeles	15 mw.	94	21000

STANDARDS AND BALANCING REACTANCES

The That 6 de Demade-Resisianme Buxes, Type
 ard Inductances, Tyue 722 Precision Condensers, and Type so9 standerd Condensers may be used
as primary slandards. The other reachames listed below may be calibraterd in terms of these standards or used as batancing reactances in substitution mirthorls.

Itstrument	Puge	Price
Trye 602 Decade-Rusistance Bos.	12	S85.001-870.00)
Trie 500 Resistor	92	$\pm .00$
TYere 52, Resistors	29	8.00
TYum 106 Starulard Induclances	41	25.00-36.00
Type 107 Variable Inuluctors.	42	$3500-40.00$
Typee 29 Decate Condensers	39	82.00-12.00
TY\|e TQ P Precision Condensers.	30	$85.00-195.100$
Type 240 Condensers	32	38.00-54.00
Type 359 Condeusers	93	22.10-24.00
Type 505 Condensers.	37	$3.50-20.100$
Type 509 Standand Condensers.	36	12.50- 48.60

NULL INDICATORS

lian! trelephanes are the most satisfactory unll indicalors botl because of their great sensilivity and lecanse of the ability of the human ear to diseriminate between a fundamental tone, its harmonics, and noise. They are highly selective, with a
resouant frequency around lkc . This prevents their use below $206-400$ rycles. The Thpre 7ab-A Thermionic Voltumer may the used over the whole range of : andio frequencies and most radio frequencies, hut is much less sensitive than other null detectors and is
not selective. The Typr 636-A Wave Analyzer is an extremely selective and sensitive null delector for constant-frequency audio signals.

Oxide-rectifier voltmeters may be used as null detectors over the entire audio-frequency range. The Typf 488-C (20,000 ohm) Output Meter is partieularly recommended.

An amplifier is gencrally needed to increase the sensitivity when using any form of visual null indicator, and the use of an amplifier is advised for precise measurements even when using telephones. The Tyre 814-AM Amplifier has been designed for this purpose. The Tres 714-A Amplifier is also suitalle.

Range	Page	Price
200 cycles- 10,000 cycles	\ldots	$\$ 12.00$
40 cycles- $\quad 50$ Me	116	160.00
40 cycles- 16,000 cycles	107	490.00
10 cycles- 10,000 cycles	120	54.00
50 eycles- 50,000 cycles	71	97.50
5 cycles $-50,000$ cycles	73	190.00

TRANSFORMERS AND FILTER SECTIONS

The Type 578 Shielded Transformers are used to eliminate the effect of transformer or generator capacitances across the bridge arms. The Tupe 666-A Variable-Ratio Transformer is designed for matching the power source and null detector to a bridge. The TYee $585-\mathrm{R}$ Transformer is a unity-
ratio transformer designed primarily as a line-isolating transformer, but is suitable for use with many bridges. Type 830 Filter Scetions may be comected between the bridge and null detector to suppress harmonics and yround noise.

Instrument	Page	Price
Type 578 Shielded Transformers	11	\$15.00
Type 666-A Variable-Ratio Transtormer	144	12.50
Typen 585-R Transtormer	144	6.00
Type 830 Filter Sections	114	18.50 .21 .50

w/AGNER GROUNDS

Since a Wagner ground of the resistance type is merely a fixed resistance with a variable tap, the Types 471, 314, 371, 214, 410, and 301 Potentiometers may be used as Wagner grounds. With
slight alterations Types 331 k -Z or 395 -Z Condensers, having balanced sections, become satisfactory Wagner grounds of the capacitance type.

Instrument	Pape	Price
Type 596 Mounted Rheostat-Potentiometer	27	\$8,50
Types 471-A and \$14-A Rheostat-Putentiometers.	129	$6.00,4.00$
Types 371 and 814-A Rleostat-Potentiometers	128	4.00, 1.50
Typrs 410-A and 301-A Rheostat-Potentiometers.	131	1.00, 1,00-1.50
Trpes 394-Z and 355-Z Variable-Air Condensers.	133	$10.00,6.00$

STANDARD-SIGNAL GENERATORS

Ior receiver testing, field intensity MEASUREMENTS, AND GENERAL-PURPOSE USE AT ALL RADIO FREQUENCIES

TYPE 605-A STANDARD-SIGNAL GENERATOR

Radio-receiver lesting requires a source of accurately known radio frequency voltage. The standard-signal generator, which is the accepted instrument for this purpose, consisis fundamentally of a carrier-frequency oscillator, a modulating oscillator, and a means for measuring and continnously varying the output voltage and the percentage of modulation.

Although satisfactory technical performance is a primary requirement, ease of operation and price are, to the user, equally important, and the Type 605-A StandardSignal Generator has been designed to satisfy all three requirements.

The frequency range covered by this instrument extends from 9.5 kilocycles to 30 megacycles without the use of plug-in coils. This range is covered in seven bands, selected by means of a switch. The tuning condenser dial is direct reading over this range to an accuracy of 1 per cent, with the exception of a small portion of the highest frequency range, for which a correction curve is supplied.

Both the inductance and the capacitance in the luned circuit of the carrier oscillator are provided with trimming adjusiments, making it possible to compensate for longperiod drifts in the calibration, if necessary. Silver contacts are used on the bandchange switch, and a positive detent mechanism is provided.
Frequency modulation and reaction of attenuator setling on carrier frefuency have been practically eliminated through the use of an aperiodically-coupled buffer amplifier between the carrier oscillator and the altenuator. Modulation, which is accomplished in the grid circuit of the amplifier tube, is variable up to a maximum of 50 per cent: An internal 400 -cycle modulating oscillator is provided, and external modulation can also be used. The exteratial modulation characteristic is flat from 30 to 15,000 cycles.

Both carrier level and modulation percentage are measured with a vachum-tube voltmeter-a distinet advantage over the fragile thermocouples frecfuently used. A single indicating meter is used, which can be switched from one voltmeter tube to the other as desired.

The output level is controlled by a resistive attenuator consisting of a constantimpedance Ayrton-P'erry-wound slide-wire and a ladder-type multiplying network.

The range of output voltage is contimously variable from 0.5 microvolt to 100,000 microvolts. The outpat impedance is constant at 10 ohms up to 10,000 microvolts and is $\mathbf{5 0}$ ohms between 10,000 and 100,000 microvolts.

An internal power supply with automatic volage regulator provides for operation from the at- power line. Since a given design of the voltage regulating transtormer is suitable for operation only from one supply frequency, three models are available for use on 60-, 50 -, or t2-eycle supply.

If desired, battery power supply can be used. For this service, a control panel earrying the neessary meters, rheostats, and switches is supplied in place of the atc power supply. Battery power requirements are listed in the specifications under "Power Supply,"

Excellent over-all shiclding is provided and all power leads are adequately filtered to prevent radio-frequency leakage.

SPECIFICATIONS

Carrier Frequency Range: 9.5 kilocycles lo 30 megaeveles.
Frequency Calibration: Direct-reading dial aceurate to $\pm 1 \%$ on all except the highest frequeney coil, A correction is supplied for this enil; logathmic frequency stale.
Output Voltage Range: Continutonsly adjustable from 0.5 mierovolt to 0.1 voll.
Output System: $10-01 / m$ conslant resisiave ontput from 0 to 0.01 volt and constant 511 olms from 0.01 to 0.1 volt.

Accuracy of Output:

Bhlow $3 \mathrm{Mr}: \pm 3 \% \pm 01$ mierovoll
s $\mathrm{to} 10 \mathrm{Me}: \pm 5 \% \pm 0,2$ microvelt
10 to $30 \mathrm{Me}: \pm 10 \% \pm 0.4$ microvolt
Modulation: Cuntimuously variable up to 50%. setlingaceraney: $\pm 10 \%$ of the indiated mordulation percentage.

Internal modulation - $\mathbf{4 0 0}$ cysles acenate within $\pm 5 \%$.

External modulation - Modulation characleris ic corstant within 1 decileel from 30 to 1 d,000 c.p.s. Internal input impedance constant at 9500 ohms. Five-voll external modulation voltane needed for 30% modulation (10 milliwatis).
Fiequency Modulation: Erequency mudulation and liywheef effect are nogligible.
Stray Fields: Whectrostalic and magnelic stry fields whe negligible within the oulput voltage ramge at more than five incles distant from the instrument.

Power Supply: Three power supplics are a vailable for 60, b0, and 42 cycles with a built-in vollage regulator that will compensate lise voltage fluchalions between 100 and 130 wolls (200 to 260 volts for the 50 -(ycle modrl). Puwer consumption is approximately 40 watl.s.
Battery Operation: 'Ithe a-c power-supply panel con be replaced by a control panel with plate and tilament meters and controls for battery operations.
Power Required: Filamsent sbpply 6.3 volls, 1.7 amperes. Plate supply 200 volts, 37 milliamperes.
Tubes: The iollowing tubes are required and fornished with the instrument:

276 -tjpe	1 95:-typ
1 89-type	\% 84-type

Tubes for the battery model are the same except that only ore si-type tube is used.
Accessories: Three-foot shiedded eable lor output connection.

One spare 955 -type tulde for vacum-lube voltmeler.

One 6-foot cable for line combertion on a-c operatud models or one 10 -fool sticided cable for hatlery conmection on at-c operated mudels.
Mounting: Pancls are of aluminom finished in thack crackle laequar. The instrument nul power supply are enclosed in a shicldeel two-scetion walnut mbinet.
Dimensions: 2.3 inches wile, $153 / 4$ inches ligh, $103 / 4$ inches desp, over-alt.
Net Weight: 67 pounds ior a-c operated mockes.

Power Supply

Type	Power Supphy		Code Word	Price
	Voltrge	Frequenoy		
605-A	100 to 130	60 cycles	annel	\$415.00
605-A	200 to 260	50 eycles	AnODe	415.00
605-A	100 to 130	42 eycles	ANYTL	415.00
605.A	Battery		Afabt	415.00

TYPE 604-B TEST-SIGNAL GENERATOR

The development of receiving equipment for use in the ligher frequency bands has resulted in the need for a suilable source of test voltage at the very high frequencies.

The general considerations surrounding work at these frequencies suggested that an inst rument of high precision would not be justified becanse of the controlling effect of lead impedances and similar factors. It was decided, therefore, to design a rugged instrument of high reliability which would give reproducible results but not necessarily possess a high absolute accuracy, and which would have a low cost.

The Type 604-B Test-Signal Generator was designed with these considerations in mind. It operates at frequencies from 3 megacycles (100 meters) to 100 megacycles (3 meters).

The unit consists of the elements which have become familiar in this type of apparatus: a modulated radio-frequency oscillator, a meter forreading the voltage impressed on the attenuator, and an attenuator, in this instance composed of capacitance elements.

Self-modulation at 400 cycles is provided for, as well as external modulation. Provision is made for an unusually high modulation band (200 ke), which makes this signal generator a suitable source for examination of receivers intended for operation in television systems.
The capacitance attenuator was selected because of its small frequency error and simplicity of construction. It is built in two sections, the first of which reduces the voltage from 10 volts to 1 volt for the rod antenna. The second section delivers an output voltage adjustable between 5 microvolts and 10,000 microvolts which is available at the usual panel-output shielded jack terminal. The rod antenna is sectionalized into such lengths as to produce field strengths in the ratio of 1 , 10 , and 100 . The total antenna length is 15 inches.

The Type 604-B Test-Signal Generator is thoroughly shielded, and the stray field is insufficient to affect the accuracy of any measurement on a receiver whose sensitivity lies within the output voltage range of the instrument.

Within the audio-frequency range the percentage modulation is set by the gridcurrent micro-ammeter. At higher modulating frequencies the voltage applied to the external modulation terminals is to be set to a value to be taken from a calibration chart furnished with the instrument. The normal modulation percentage is 30 per cent. Input impedance of the external modulation terminals is about 5000 ohms at audio frequencies.

SPECIFICATIONS

Garrier-Frequency Range: 3 Mc to 100 Me , covered with 13 plug-in inductors supplied with the instrument. Special inductors ran be buill to order for frequencies as low as 300 ke . Prices on request.
Output: Capacitance-type allunuator furutshes continuously adjustable voltage from 5 to 10,000 microvolts. A rod antenna in three sections provides field strengths in the zatio of 1,10 , and 180 . The input to the antenna is constant at 1 volt.
Accuracy of Output Voltage: The accuracy of the vollage at the antenaa terminal up to frequencies of 10 megracyeles is $\pm 5 \%$; up to irequencies of 30 megacycles, $\pm 20 \%$. The accuracy of the voltage at the outrot terminal up to 10 meracydes is $\pm 10 \%$; up to 30 megacycles, $\pm 90 \%$; above 30 Me, no briel statement as to the vollagenccuracy would be aseful, since the error introluced by connecting any lead to the output of the generator is much greater than that inherent in the instrument itself.
Modulation: The internal modulating oscillator is
adjusted to 400 cycles ($\pm 5 \%$). External modulation circuit passes frequencies up to 000 ke . Input impedance, 8000 ohims. Voltage required, approximately f wolts for 30% modulation.
Accessories: A shichled connecting cable and 13 inductors with storage rack are provided, as well as an antenna which is in three sections.
Tubes: 'Iwo 31-type tubes are supplieti.
Power Supply: Two No. 6 dry cells and four $4 \sqrt{5}$-volt Burgess No. 530 s batteries or equivalent. Batteries are not supplied with the instrunent.
Mounting: The unit is mountet on a black crackle aluminum panel and placed in a shielded walnut whinct. Space has been provided inside the cabinel for batteries and inductor slorage rack.
Dimensions: (M ifth) $183 \times$ (heiglt) $9 \times$ (ilepth) 161/2 incles.
Net Weight: 42 pounts, without batteries; 571/4 pounds, with batteries.

Type	Conde Word	Price
*604-B	dense	\$315.00
Frequency Cali		3.00
*Frequency calibrations supphied only when speciticully urdmed with the instruncut. Use conle wort mexseconve when the culire set of 1 is induetors is to bee calibrated.		

TYPE 418 DUMMY ANTENNA

 $418-\mathrm{F}$ places 1.11 ohms in parallel with the normal 10 -ohm output impedance of a standard-signal gencrator whicl allows the output to be introduced in series with a loop antenna for either receiver testing or fick intensity measurement. The output of the generator is thereby reduced by a factor of 10 .

Mechanically, the T'ype 418 Dummy Antenma is designed to minimize the difficulties of making connections One end plugs directly into the output jack of a
Type $605-\mathrm{A}$ or a Type 604 -B Standard-Signal Generator. The output cord supplied difficulties of making connections. One end plugs directly into the output jack of a
Type $605-\mathrm{A}$ or a Type 604 -B Standard-Signal Gencrator. The output cord supplied with the generator plugs into the other end. dummy antema mast be used to simulate the characteristics of a typical receiving antenna. Type 418-D and Trpe 418-E Dummy Antennas are designed in accordance with the specifications of the Institute of Radio Engineers. Type 418-D is intended for use in the normal broadcast bund (550 to 1500 kc). The elfective height is 4 meters. Type 418 -E is designed for use at high frequencies. Type

For many receiver tests an artificial or

SIGNAL GENERATORS

SPECIFICATIONS

Circuit Conslants: Type 418-D, $200 \mu \mu \mathrm{f}, 20 \mu \mathrm{~h}$, and 15 2 connected in series; Type 418-E, 400Ω, series; Type 418-F, 1.11Ω, shunl connected.

Mounting: Plug terminal to fit the output jack of

General Radio standard-signal generators at one coll, outpul jack at the other.
Dimensions: (Length) 11/8 \times (diameter) $13 / 8$ inches, over-all.
Net Weight: 6 ounces.

Type	Code Wond	Pries
418-D	fiphom	\$10.00
418-E	devee	10.00
418-F	טוCEH	10.00

TYPE 687-B ELECTRON OSCILLOGRAPH AND BEDELL SWEEP CIRCUIT

The Typa 687-B Electron Oscillograph is designed to present in a simple, portable, and inexpensive form all of the elements required for using the cathode-ray tube as an oseillograph. The unit includes a power supply providing for all voltage requirements as well as a sweep circuit which furnishes a saw-tonth deflecting voltage.
This instrument will be found to meet the great majority of requirements for a general-purpose oseillograph. It can be used in the examination of all types of waveform. In this application the sweep circuit is connected to the horizontal plates and performs the function of the revolving mirror in the mechanical type of oscillograph. The equipment is as convenient to use as a voltmeter. It requires only connection to the line and to the souree of voltage which is being examined.

This General Radio cathode-ray oscillograph has two particular advantages. The internal sweep circuit is of the self-synchronizing type, that is, it will lock in step with a recurrent waveform of any audio frequency. The steady sereen pattern so obtained is invaluable in carcful visual study, meastrement, and photography of complex waveforms with simple camera equipment.
The short, direct leads from the deflecting-plate cap terminals to the panel remove the normal frequency limitations and make the oscillograph ideal for measurements up to 130 megacycles (2.3 meters). These accessible panel terminals permit the operation of either or both pairs of plates balanced or unbalanced to ground.
As a radio-frequency voltmeter the deffection sensitivity is constant over the same wide frequency range, making the oscillograph ideally suited for modulation measurements. If the lincar sweep circuit is used, a continuous clieck upon modulation is provided, since a single glance at the modulation-envelope pattern will show whether or not over-modulation is taking place. With the modulating voltage applied to the horizontal plates, the familiar trapezoidal modulation patterns are obtained on which accurate measurements may be made for steady state conditions.

The power supply is designed to provide all necessary voltages for the cathode-ray tube which is provided as initial equipment. Mechanically, the equipment is assembled in a carrying case of convenjent dimensions with a handle, making it easily portable. A rack-mounting model is also available.

SPECIFICATIONS

Tube: All tube specifications are the manufacturers* latest published data. Type 687-l'l is equivalent to RCA-905 and Trpe 687-P2 is equivalent to RCA-907, both mede by the RCA Manufacturing Company.
Fluorescent Screen: A so-called fast-seleen tube (Type 087-Pa) will be furnished unless otherwise specified. This type of serecon has a bluish fluorescence, is recommended for photography, and is essential when rapid transients are involved, or for use with the Class 651-A-E Camera Assembly for photographing transients or non-recurrent wavetorms. A Type 687-Pl slow-screcn tube (greenish Auorescence) can be supplied at a siightly lower price, but is not suitable for use with the movingfilm camera.
Screen Diameter: 5 inches.
Voltage Sensitivity: Approximately 75 volts per inch (rertical), 90 volts per inch (horizontal).
Impedance of Deflecting Plates: Capaeitance is approximately 15 mieromicrofarads berween deflection terminals (neasured at the instrument panel).
Frequency Characteristics: The cireuits of the rleflecting plates show no appreciable frequency effects below 180 megacycles.
Power Supply: All voltages necessary are oblained from the self-contained power supply. These are Anode Foltaye, 1500 volts; Focusing A tode Follage, 0 to 400 volts, positive; Grid, 0 to -40 volis; Heater

Vollage, 2.5 volts; $/ 7$ eaier Current, 2,1 amperes. The power supply operates from the 115 -volt, 50 - 60 cycle, a-c line. It draws 50 watts wheo the sweep circuit is operating and 90 watts when the sweep circuit is not operating.
Terminals: Jack-top bincling posts, monoted on the pancl of the osciltograph as shown in the illustration. Tubes Required: The following tubes are required and are supplied as initiai equipment: one 80-type, one $885-1 \mathrm{yJx}$, one 58 -type, one 879-type, and one General Radio Type 687-P2 (RCA-907).
Sweep Circuit: Self-containcd Bedell Sweep Cireuit range: 30 to 8000 sweeps jer second, permitling observation of frequencies up to ahout 21,000 cycles. Sweep is stabilized, requiring a control voltage of 5 to 100 volts rms. Impedanes of the control circuit is about 900,000 ohms.
Mounting: Type 687-BM is mounted in a walnut case with carrying handle. There is an opening for the tube screen at one end of the case. The control panel is situated at the side. A relay-rack mounting model, Trie 687-BR is also available on special order.
Dimensions: Tyre 687-BM, (length) 195% (width) 81/4 x (lueight) $173 / 4$ inches, over-all. Type $687-\mathrm{BR}$, (length) $19 \times$ (height) $153_{4}^{3} \times$ (depth helind panel) 191/2 inches, over-all.
Net Weight: Type 687-BM, 371/4 pounds; Tyre 687-BR, 95 pounds.

Type	Description	Conde Word	Price
$\begin{aligned} & \text { 687-BM } \\ & \text { * } 687-\mathrm{BR} \end{aligned}$	Cabinet Modes Relay-Rack Model	Chisp callf	$\begin{array}{r} \$ 184.00 \\ 224.00 \end{array}$

Prices $\$ 1.00$ less with Type 687-P1 Tule.
*Not carried in atonk.
PATENT NOTICE. See Note 4 , page v .
REPLACEMENT TUBES

Type	Deseripition	Come Word	Price
$\begin{aligned} & \text { 687-P1 } \\ & 687-\mathrm{P} 2 \end{aligned}$	Slow-Screen Tube (green) Fast-Screen Tube (blue).	ACCEBsOHKY ACCEASOCAT	$\begin{array}{r} \$ 40.00 \\ 44.00 \end{array}$

OSCILLOGRAPH AMPLIFIER (TYPE 714-A)

See page 73 for specifications

In many applications it is found desirable to increase the voltage under observation before applying it to the deflecting plates of an electron oscillograph. The amplifier used for this purpose must be of high input impedance and excellent frequency characteristic if the advantages of the electron type of oseillograph are not to be sacrificed.
The Type 714-A Amplifier has been designed for use with the Type 687-B Electron Oscillograph.

CLASS 651 CAMERA ASSEMBLIES

The light film speeds att which the new continnous-filn camera will operate make it possible to take cathode-ray oscillograms ol high-frecuency trasients. The pholugraph shows the Class 651-A-F' Camera Assembly and a TYpe 687-A Plectron Oscillograph and bedell Sweep Circuil

The many applications of high-speed photography to industrial research have prompted the manufacture of a new continuous-film camera based on the designs of Professor Harold E. Edgerton of the Massachusetts Institute of Technology. Originally designed to photograph rapid mechanical actions by the light from an EAtgerton Stroboscope for subsequent projection at nomal speed to give the effect of slow motion, the camera is also ideal for recording high-speed transients with a cathode-ray oscillograph.

The General Radio camera differs from conventional motion-picture camens in its lack of a shutter and intermittent film feed and in its ability to drive at speeds as high as 85 miles per hour (2000 frames per second) without damage to the film. Cureful attention to the dynmmical design of all moving parts has made this possible. Separate motors are used to drive the film and the take-up reel on which the exposed film is wound. Provision has leen made for operation at different filtn speeds over a wide range so that the new camera can be made to fill almost every research need for a moving-film camera.

The two tyjes of assenbly fisted will meet most of the usual applications. The A-E group is designed for medium speeds, while the A-M assembly offers a camera suitable tor extromely high film speeds. Interchangeable motors provide wide speed ranges, and a number of commercial lenses may be fitted to neet inflexible conditions without departing from the standard camera design.

Special assembles to mect particular recuirements can be built to order.

CLASS 651-A-E CAMERA ASSEMBLY

This assembly is recommended for lowand medium-speed work. It is the one that would ordinarily be used for making records wilh a cathode-ray oscillograph, but it can also be used for medium-speed stroboscopic photograpliy. Those interested in the latter use should, however, submit their requirements to the General Radio Company for suggestions before roming to a final decision.

The itlustration on this page sbows the Typa 651-A High-Speed camera of the Class 651-A-l Camera Assembly, illustrated on the opposite page, with its slide removed to show the interual design. The mamer in which the camera is focused and in which the film is threaded is shown by the illustration. The large central driving sprocket and the bottom take-up reel are each driven by separate motors.

Interior View of the High-Speed Camerat The type of main-sprocket drive determines the assembly class letter to which the camera belongs. The camena is foensed by viewing the image through the focusing eyepiece when the two apertures in the driving sprocket are aligued as shown. The image forms on a small piece of Iranslucent film iaserled in the gate.

SPECIFICATIONS

Film: Any $3.5-\mathrm{mm}$ film or paper with standaril gerforations can be rum Daylight loading amd unloading will negligible waste. Capacily of reels, 100 feet.
Film-Speed Range: When the notors are operated at the voltages mentioned in "Power Supply" lelow, film speeds between 3 lieet per second and its feet per second are obtainable

Lens System; Lenis must be purchased separately. An $f / 2.5,47-m m$ lens from the Bell amil Howell "Eyemo" series is a vailable in ant atjustalle momting that permits foensing for distances between 8 and gol inchas, The intage for locusing is observed directly on the eqtivalent of a gromml glass in the plane of the film.

The lens is sufticiently "fust" lo permit t'e recording of traces from a Type Es7-A Electron Oscillograph on super-sensitive panchromatio film at a
speed of 35 feet per seomad, when the ratio of totat length along the trane to length of film is less than 5 to L .
Dtive System: The film-drive sprockel is drivent through a redtuing gear lyy a universal (a-c or al-c) motor. The take-up reel on which the exposed film is wound is driven by a secont universal motor.
Power Supply: The wide range of film speeds is oblatined by applying voltages between 50 volis and Q 230 volts to both the dirjving and take-up motors. When 115-volt or 230 -volt $\overline{0} 6$ - to fio-cycle service is a vailable, voltage control over the entire range can be obtantued by using a Variac. When d-e service only is a vailable, a rheostat must be used.
Dimensions: (Longth) 117/8 x (wid|h) $61 / 2 \times$ (height) 1 $131 / 2$ inches, over-itl].
Net Weight: :32 pounds.

Clay,	Deserrotion	Code Word	Price
*651-A.E	Camera Assembly	DINER	\$410,00
$651 . \mathrm{P} 1$	Lens, Bell and Howell, f/2.5	drater	81.00

CLASS 651-A-M CAMERA ASSEMBLY

The Class 651-A-M Camera Assembly is designed particularly for super-high-speed stroboscopic photography where the film is later to be printed and projected for study or demonstration purposes. Atmaximum film speed this equipment gives "slow-motion" results in the ratio of about 120 to 1 when compared with the original action.

Inasmuch as the camera is of the shutterless continuous-film type, an intermittent flashing light source is required to produce the individual exposures. Because of the speeds involved, a Type 621 Edgerton Power Stroboscope, illustrated on page 2, is recommended for the source of illumination.

Where high-speed films are to be projected to give slow-motion action, provision for accurately framing the separate exposures is required. A commutator is provided for this purpose. Mounted on the shaft of the main film-drive sprocket, it is connected to the stroboscope circuit and provides the impulse which sets off the flash for each exposure. The exposures are thus accurately spaced on the film, and the film may be projected, without jumping of the irage, using standard projection equipment.

SPECIFICATIONS

Film: Any $35-\mathrm{mm}$ perforated film or paper can be run. Capacity of reels, 100 feet.
Film Speed: Lising the $3 / 4$-incl masking gate and the commutator supplied with the assembly, 1200 standard-size frames per second are exposed with a motor speed of 3600 r.p.m. giving a linear speed for the film of about 75 feet per second.
Lens System; Lens must be purchased separately. An $f / 2.5,47$-mm lens from the Bell and Howell "Eyemo" series is available in an adjustable monnting that permils focusing for distances between 8 and 20 inches.

Drive System: The drive motor is a 115 -volt, 3600 r.p.m., 60-cycle, 3-phase, induction motor that drives the sprocket through a 1 -to-1 belt drive. The take-up motor is a 11.5 -volt universal notor.
If the film is to be projected, a commutator is required. The commutator supplied is for full-size, 3/4-inch frames.
Dimensions: Camera, (length) $117 / 8 \mathrm{x}$ (width) $61 / 2 \mathrm{x}$ (height) $16 \frac{1}{2}$ inclies, over-all; base, (length) 18 x (width) $15 \times$ (height) $11 / 2$ inches, over-all.
Net Weight: fio pounds.

Class	Descriphion	Code Word	Price
$\begin{gathered} * 651-\mathrm{A}-\mathrm{M} \\ 651-\mathrm{P1} \end{gathered}$	Camera Assembly Lens, Bell and Howell, f/2.5	mitae dLary	$\begin{array}{r} \$ 490.00 \\ 91.00 \end{array}$

[^8]
TYPE 636-A WAVE ANALYZER

The Type 636-A Wave Analyzer is a superheterodyne vacuum-tube voltmeter with a very sharply tuned intermediate-frequency amplifier which makes use of two quartzcrystal filters. The range of altermating-current voltages that may be measured with the analyzer is from 200 microvolts to 200 volts.

Functionally, the instrument consists of two parts. The first is a voltmeter of adjustable sensitivity which responds to a single frequency oniy, and the second is a means of placing this single frequency at any point in the andio-frequency spectrum that is desired.

With the Type 636-A Wave Analyzer a complex waveform may be explored by adjusting the voltmeter to respond to all audio frequencies in suceession and observing the voltage of each particular frequency that is present in the wave.

The operation of the device fo obtain this information is extremely simple. It consists of rotating the large dial, which controls the response frequency of the voltmeter, slowly through its range, and observing each deflection of the voltmeter which occurs.

The most scrious problem in the design of this type of instrument is to secure a sufficiently sharp filtering action so that the voltmeter will respond only to a very narrow band of frequencies. This has been accomplisted in the Type 636-A Wave Analyzer by the use of a two-stage mechanical filter using quarta bars tuned to 50 kc . The use of the fixed-frequency mechanical filter results in avoidance of the circuit complications of variable-frequency filters and in a great increase in filler selectivity. In order to vary the response frequency of the analyzer while malking use of a fixedfrequency filter a heterodyne method is used. The adjustable element in the system is the frequency of the heterodyning oscillator which is controlled by the large dial.

The ontput of the local oscillator and the whole of the complex waveform to be examined are fed to a balanced modulator where their combination produres both the sum and differenee frequencies, or side bands, in the output. The original of the comples waveform is not passed by the modulator intermediate-froquency output transfomer. and the local oscillator carrier frequency is suppressed in the outpat becanse of the two-tube babinced modulator employed

The so-kitocycle component of the upper side bamd, proportional to the voltage of that frequency present in the original wave to which the main dial is set, is selected and amplified by the intermediate stages. The adjustable gain control of the amplifier gives the many values listed below for full-scale deflections of the output meter. The standards for the voltage and frequency calibation are self-containel withim the instrument.

The input impetance of the analyzer is momally 100,000 ohnss. Under these conditions the multiplier range is surlas to produce fult-scole readings on the meter from 0.001 volt to 4 volts. An extermal 10 -mexgohn multiplier is supplied which alters this range to from 0.1 volt to 900 volts. Since the meter can be used at one-tenth full scale, the total voltage range of the instrument is 0.2 miltivolt to 200 volts,

The anatyzer is not only useful for the measurement of harmonic distortion, but also for the study of nom-multiple voltages in a complex wavetom. Examples of this type of work include hom measurements in radio-receiver outputs and indurtion studies on telephone tines.

SPECIFICATIONS

Frequency Range: 20 to 16,000 cycles.

Selectivity: Extrenc selectivity permitg thecrimimation of voltages liffering by only in fow certes. The response is down tidb at e cyeles, 60 dth at 30 cycles, and for dhat a a eveles from the peak. The selectivity is constant throughont the of herating frequency range.
Voltage Range: 0.2 millivoll to 401 volts. The meter in empunction with its multiphier has at fult-seake minge of 0.001, 0.002, 0.005, 0.010, 0.020, 0.050, 0.1.
 phier is provided to increase the input impuatame and to extend the range to 200 rolts. Range with nulliplier, 0.02 volt to Qum volts.
Voltage Accuracy: Willinin . 5% on all rages except an the $1-\operatorname{mo}$ and E -nuy (full-scale) settings of the multiplieer swith where the accuracy is within 10%. Spurions voltages from higher order nomblation prontueds intronduces by the detector atre suppresser by at lenst 70 db .
Input Impedance: 100,006 whms: 10 nesgolnus with the external mat iphier. The 10 en to 1 externat mulliplier is woll shindrod atml las sueh a high impul inn-
pedance that the analyger may he connerted almost any where in a circuit withoul using serins cond nisers or taking any other precanions usuilly necessary with harmonic amalyzers.

Accuracy of Calibration: The fropurncy seale of the main turing control is indixidally engraved ancl is approximately logarithmic over its inll spread ot : lomest Is ancles For one year from the thite of purehnse, the calibretion can be retied upon tu within Q\% whers the analyer lans heen carefully set to zern.

Tubes Required: Threer 41-1:pe, two $75-\mathrm{tyne}$, and one st-type tubes, supplied with the instmment.
Power Supply: The flament supyly is obtanced from a t - wott sloruge batery by newns of enble prowided. The plate supply is ubtained fiom three 45 -wall Eveready No. mat hatherin or erpisalent, space for which is provided in the lower comparthent of the instrmment. Batleries are nol induled in lice price of the instrument.
Dimensions: (ILeipht) $91 / 4 \times($ wirlth $) 21 \times$ (dupth) 121/2 inches, over-inll.
Net Weight: $6 \mathrm{R}^{1 / 2}$ poumis.

Tipe	Cole Word	Price
636-A	Above	\$490.00*

"With luters and raldiplier. loal withont bntlerios. PATENT NOTICE. SM. Nolek $1,4,24$, wuge 5.

CLASS 730-A TRANSMISSION MONITORING ASSEMBLY

In order to maintain a broadeasi transmitter at a high level of efficiency without seriously impairing the output quality, it is necessary that frequent checks be made of the transmitter performance. A transmitter operating at a modulation percentage appreciably below its maximum capability is not getting its maximum coverage. On the other land, too high a percentage results in serious distortion. Only by the measurement ol such quantities as percontage nodulation, percentage distortion, overmodulation peaks, carrier noise level, etc., can the optimum conditions of operation be determined. To enable these measurements to be made rapidly aud acourately is one of the functions of the Class 750-A Transmission Monitoring Assembly. In addition, the transmission can be continuously monitored with a visual indication of deviations from normal performate.

In these instruments, the simplicity of operation and direct-reading features essential for monitoring lave been combined with the accuracy of a latoratory measurement.

The assembly consists of three separate units, Type 781-A Modulation Monitor, Typa $732-\mathrm{A}$ Distortion and Noise Meter, and Type $733-\mathrm{A}$ Oscillator, eack of which is described on the following pages. All units are a-c operated and desigred for relayrack mounting. The Tyre $731-\mathrm{A}$ Modulation Montor is approved by the Federal Communications Commission (Aproval No. [5.51).

The following measurements ean be made;

1. Percentage modulation on both positive and negative peaks.
2. Program monitoring with high-speed volume indicator meter.
3. Carrier shift upon the application of modnlation.
4. Carrier noise and hum level.
5. Combined audio-frequency harmonic distortion of modulation envelope.
6. Modulation peaks exceeding a predetermined, desired degree of modulation (i.e., over-modulation indicitor).
7. Combined audio-frequency harmonic distortion present in speech-input amplifier and other station equipment.
8. Noise and hum level of audio amplifiers and other station equipment, including wire lines to remote pickup points and to transmitter.
If a variable-frequency audio oscillator is available, it is also possible to measure:
9. Transmitter audio-frequency response.
10. Audio amplifier and equipment frequency response.
11. Wire line frequency response.

The guantities measured are read directly from the instrument, and no calculations whatsoever are necessary. Neither is it necessary to make any difficult and critical adjustments or balances.

	Code Word	Price
Class 730-A Transmission Monitoring Assembly	exile	\$462.00*
${ }^{-}$Price does not inclurle relay rack.		

TYPE 731-A MODULATION MONITOR

The modulation monitor is one of the most important test instruments in the broadcasting station, since a continuous indication of the percentage modulation indicates immediately any deviation from normal performance.

Type 731-A Modulation Monitor consists of three essential elements: (1) a linear diode rectifier which gives an instantaneous output voltage proportional to the carrier envelope, (2) a peak voltmeter which gives a continuous indication of the peak modulation, and (3) a trigger circuit which flashes a light whenever the modulation momentarily exceeds any value which has been previously set by the operator.

In the output of the linear rectifier is a d-c meter which indicates the carrier level at which the instrument is operating and also shows any carrier shift during modulation, a condition which results from unequal positive and negative peaks.

The meter which reads modulation percentage has a high speed movement. It is used in conjunction with electrical delay circuits to give a rapid upswing and a slower return. This type of movement is extremely casy to follow with the eye and is the most satisfactory method of monitoring level thus far devised.

The flashing lamp is extremely useful as a monitoring device. It is set to flash with moderate frequency when the transmitter is operating normally. If, without a change in program, the flashing rate changes markedly, the operator is made aware that something is wrong.

The Type 731-A Modulation Monitor meets all the requirements for modulation monitors of Rule 139 Amended of the Federal Communications Commission, It has been approved by the Commission and assigned Approval No. 1551.

SPECIFICATIONS

Range: Modulation percentage, 0 to 110% indicated by ueter on positive or negative peaks; tashing incandescent lamp adjustment, 0 to 100% on negative peaks.
Carrier Frequency Range: The monitor will operate at any carrier irequency between 200 an $\cdot 130,000 \mathrm{kc}$.

Since the input circuit is a condenser voltage divider, a slight alteration of the input circuit may be necessary at the higher frequencies to prevent the excessive absorption of power from the transmitter.
Accuracy: The over-iall accuracy of measurement is $\pm 2 \%$ of the modulation percentage at 0% and 100%.

At 50% modulation the possible error rises to a maximum of 4% of the indicated percentage.
Modulation Frequency Range: The frequency response is fal within 0.5 db between 40 and 15,000 cycles.

Power Supply: 115 volls, 50 to 60 cycles.
Meters: Rectificd carrier meter and high speed per cent modulation meter are provided. The latter hats a decibel soule as well, which is useful when adjusting tremsuitler input. It can also be used Sor taking over-all fidelity characleristics.
Controls: A control is included for adjusting the amplitude of the carricr. A switelt is provided for measuring the positive or the negative peaks, as desired. A nominal modolation pfaks dial, calibrated, and continuously variable from 0 to 100%, is provided. An on-off switcl with pilot lawp controls the power input.
Vacuum Tubes: Thic following tubes are used: two 1-V, one 6C6, one 75, one 885, and one 84, All are supplied with the instruwent,
Lamp: The over-modelation lamp will flash at the inslant when the modulation exceeds the value to
which the nominal modulation peaks dial is set, and will remain lighted so long as this condilion jersists. An incandescent lamp is used, giving a brillinal light.

Shielding: The morlulation monitor is well shielded so that it may be operated in radio-frequency fields encountered in the operating room.

Terminals: A pair of binding posts at the rear is provided for the radio-frequeney input. Terminals are provided on the multipoint connector at the rear for connecting an additional remote "overmodulation" indieator lamp, or a remote high-speed modulation meter. Provision is also made for conaecting a peak counter or recorder.

Other Accessories Supplied: Spare pilot lamps and fuses, multipoint connector, and cord and plug assembly for the a-c line connection.

Mounting: The instrument is relay-rack mounted The panel is aluminum with the standard Generad Radio black lacquer finish.

Dimensions: Panel, (length) 19 x (height) 83/4 incles; depth behind panel, 12 inches.
Net Weight: 30 pounds.

TYPE 732-A DISTORTION AND NOISE METER

Audio-frequency distortion and noise level camot be measured while the program is on, but through the use of the Jypr 792-A Distortion and Noise Meter these qualities can be measured so rapidly that frequent checks are possible without interfering with station operation.

This instrument consists of a linear rectifier, a filter, an anplifier, and a vacum-tube voltmeter. The meter reads distortion directly in per cent and reads carrier noise or lum level directly in decibels with respect to normal modulating input to the transmitter.

Provision has been made, by the inclusion of front-panel jacks, for using the equipment with atudio-frequency inputs in the measurement of distortion and noise in supplementary pickup lines and specch amplifiers in order that they may be brought to the same high standard of performance established in the transmitter itself.

The output of the lincar rectifier is also avalable from panel jacks so that a wave analyzer may be used to analyze the wavelorms of the carrier envelope over the complete andio-lrequency range. A Type 636-A Wave Analyzer is recommended for this purpose.

A 400 -cycle lest signal of good waveform is required for use with the distortion and noise meter. The Type 733-A Oscillator described on the next page has been designed for this purpose.

SPECIFICATIONS

Distortion Range: Distortion is reacl direetly from a large meter. Full-seale values of $30 \%, 10 \%, 3 \%$, and 1% are provided, and are selected $\mathrm{b} y$ a multiplier switch. The range for carrier mise mensurement. is from 30 to 70 db below 100% modulation or t 5 s d , below an audio-frequeney signal of zero level.
Audio-Frequency Range: 380 to 420 cyeles for distorlion measurements; 30 to 10,000 cyeles for noise or lium measurement.
Carrier Frequency Ranģe: 200 lie to $30,000 \mathrm{kc}$.
Accuracy: The over-all ancuracy of the metsurements is better than $\pm 5 \%$ of the indicated percentime distortion.
Meter: A Weston Model 643 Meter, calibrated - lireelly in per cent distortion and decibels moise level, is provided. Zero adjustment of the meter is made by a linol, projectimg from the meter liace.
Controls: A autrier inputt control is provided so that the rudio-frequency input may be adjusted. This adjustment is not crilical and it is necessary only to set the carries roughly to the vilue required to
produce full-scate defection on the meter. An amplifier gain control and an on-ore switeh with pilot lampare also provided.
Vacuum Tubes: One 37, two fiCif, one 1-Y, antl one 84 are supplied.
Other Accessories Supplied: Spare fuses and pilot lamps.
Terminals: In addition to the radio-frepueney input binding posts at the rear, two normal-through Western Electric output donble jacks are provided on the panel, one at high impedance for the modulated envelope from the rectitier, and one at 500 ohrus tor the input. to the distortion and neise-rieter amplifier for use in andio-frequency lesting
Power Supply: 14.5 volts, $6 t$ cycles, ac.
Mounting: The instrument is relay-rack mounted. The panel is aluminum with the standard General Radio black crackle licequer finish.
Dimensions: Eanel, $19 \times 8^{3} 4$ inches; depth behind pancl, 12 incles.
Net Weight: 40 pounds.

Type	Description	Cade Tord	Price
732-A	Distortion and Noise Meter	expel	\$205.00

TYPE 733-A OSCILLATOR

For distortion measurements an andio oscillator of extremely low hatmonic content is required in order that the residual distortion be negligible in comparison with the small amount introduced by the equipment under test. When the Type 759-A Distortion and Noise Meter is used, an oscillator of fixed frequency hetween 380 and 180 cycles is required. The Type 733 -A Oscillator is desigued for this purpose.

SPECIFICATIONS

Frequency: $\mathbf{4 0 0}$ cyeles $\pm 2 \%$. The frequency of the oscillitor dows not clange by more than 1% because of heat dissipation in the unil or changes in ambient temperature. The design of the fiter of the Trpe 732-A Distortion and Noise Meter with which this oscillator is used is such that much wider changes than this would have entirely megligible effect.
Output Power: 30 milliwatts (+7.5 decibels).
Internal Output Impedance: 50,500 , or 5000 ohins. This is oblained by changing a connection between the output terminals and the filter. These values of output impertanec cuable a wide range of impedances to be commected to the osciltator withoul large misumatell loss.
Waveform: 0.1% to 0.8% distortion, depending
upon loas. The distortion is less then 0.1% when the loud is 5 milliwatts and is 0.05% at no loand.
Controls: There is an out pat volume control inml an ov-orf switch.
Tubes: One 76 and one q5\% are supplied.
Terminals: \& Western Electric output double jack is provided ou the panel and binding posts at the rear.
Power Supply: 115 volts, 60 eyeles, ac.
Mounting: The instrument is reluy-rack mounted. The panel is atominum with the standard General Radio black crackle lacquer linish.
Dimensions: $19 \times 51 / 4 \times 5$ inches tleep.
Net Weight: 18 pounds.

Type	Description	Conde Word	Price
733-A		Extol	\$62.00

patent nolice. Soe Note i, page v.

TYPE 530 BAND-PASS FLLTER

This filter was designed for use with 400 -cycle oscillators to purify the voltage for use in distortion measurements. It is useful in any other cases where an extremely pure 400 -eyde voltage is desired. The use of one of these filters reduces the harmonic content by at least 30 decibels. They may be used with a fundamental frequency of from 375 to 425 cycles. Sufficient attemation is provided at the lowfrequency end to remove any power-supply hum voltage which may be present. The two types differ only in characteristic
 impedance. These filters are not carried in stock but are supplied on order.
Inasmuch as the type of filter section employed is unbalanced to ground, this band-pass filter may not be used in balanced-circuit inmots to the apparatus under test. For balanced-line inpuls the use of a Type $585-\mathrm{R}$ Transtormer, described on page 144, between the filter section and the apparatus input is recommended. This translormer is designed for the interconnection of balanced and umbalaced lines and will not introduce hamonics into a 400 -eycle lest signal ol moderate amplitude.

A 400 -cycle, vacum tube, a-c operated oscillator with an output waveform of purity equal to that obtained from other soures through a Tree 530 Band-Pass Filter is a component part of the Class 730-A Transmission Monitoring Assembly deseribed on page 100. This po-cyele Type $731-\mathrm{A}$ Oscillator is separately available in rack-mounting form.

SPECIFICATIONS

Tupe	Impalance	Pass Band	Code Word	Price
$* 530-\mathrm{A}$	600 ohms	$375-425$ cycles	rocal	$\$ 30.00$
$* 530-\mathrm{C}$	6000 ohms	$375-495$ cycles	FUARY	30.00

* Built to order-rot carried in stock. PATENT NOTME. Sce Note?

Attenuation Characteristic: See accompanying earve. A pealo of maximum attenuation is set for rejection of the 800 -tyele scend barmonie.
Impedance: Desigris arc on file for a filter of 600-ohm eharacteristic impedance for line use and for a 6000-ohm filter for use, witla a blocling condenser, directly on the output of an oscilator or an ataplitier stage. Filters ordered for otler inipedances are obtaimable at a slight increase in cost.
Mounting: Filters are mometed in standard drawn steel, wax-filled Model D cases.
Dimensions: Cisse, (width) 5 s/ $/ 2 \times$ (height) $51 / 2 \times$ (fleplli) $51 / 2$ inches, over-all. Soc also dimensioned (lrawitut, page 157 .
Net Weight: 8 pounds.

TYPE 830 WAVE FILTERS

Type 830 Wave Filters are built in Iow-pass, high-pass, and band-pass models. The high- and low-pass types are compact two-section filters having particularly good characteristics. The sections co-operate to give both a sharp) cut-off and high discrimination against frequencies outside the pass band. Approximate attenuation curves are shown below. It will be seen that the insertion loss at the cut-off frequency is less than 3 decibels and that a discrinimation of at least 40 decibels is maintained for all frequencies greater than 1.5 times the cut-ofif for the low-pass types or less than two-thirds of the rut-ofl for the high-pass types.
'Ihe $500-\mathrm{c} . \mathrm{p}$.s. high-pass and 1000 e.p.s. low-pass types can be used in taudem to provide a band-pass filter covering one octave. The attenuation curve of this combination is also shown.

The band-pass model, Typi 830-R, is sharply tuned to pass 1000 c.p.s. and discriminate against other frequencies, the design bring such that a maximun of attenuation is provided lor the second harmonic at 2000 c.p.s. The input and output coils of this unit are tapped so that the filter can be used with high or low terminating impedances, or to replace the combination of a filter and transformer to work between different impedances. It is particularly suited to operate between the high-impedance output of the Trpe 814-A Amplifier and a copper-oside meter to provide a visual balance indicator for bridge measurements at 1000 c.p.s.

1000 -cycle $\mathrm{H}-\mathrm{l}$ and L-P

Type 830-R

500 -cyele H-P and 1000 -cyele L-P'

SPECIFICATIONS

Mounting: All models except Type 830-B are mounted in Model C cuses, dimensions for which are given on page 141. Tyre $830-\mathrm{B}$ is mounted in a Model D case.

Terminals: Tyיes 830-A to 830-II inclusive are provided with both soldering lugs and jack-top binding posts. Typri 830-R has soldering lugs only.
Net Weight: Type 830-B, 71/2 pounds; all others, $31 / 2$ pounds.

Type $\begin{gathered}\text { Cut-Off } \\ \text { Frequencid }\end{gathered} \quad$ Imperiance				Code Word	Price
*830-A	500 cycles	500Ω	Low-Pass	filtergoat	\$18.50
*830-B	500 cycles	500Ω	High-Pass	filteigisa	21.50
*830-C	500 cycles	5000Ω	Low-Pass	flltershoe	18.50
*830-D	500 cycles	5000Ω	High.Pass	flleterseat	18.50
*830-E	1000 cycles	500Ω	Low-Pass	filthrioad	18.50
*830-F	1000 cycles	500Ω	High-Pass	filteramgh	18.50
*830-G	1000 cycles	5000Ω	Low-Pass	FILTETATGN	18.50
*830-H	1000 cycles	5000Ω	High.Pass	Nilterpipe	18.50
830-R	1000 cycles $\left\{\begin{array}{l}5 \\ 5\end{array}\right.$	$5000,500,50$	Band-Pass	filtmitiote	19.50

METERS

VACUUM-TUBE AND COPPER-OXIDE TYPES FOR MEASURING A-C VOLTAGE, A-C POWER OUTPUT, AND

AUDIO-FREQUENCY
POWER LEVEL

TYPE 726-A VACUUM-TUBE VOLTMETER

This is a multiple-range instrument designed to permit the measurcment of a wide range, 0.1 to 150 volts, without employing external multipliers. Λ five-position switch changes the range and aso correc's the zero setting, so that in making measurements it is merely necessary to connect the unknown voltage to the terminals of the instrument and vary the switch until the reading obtained is on scale. Over-voltage cannot damage the meter. Since the seale is essentially linear, the ranges provided make it possible to read all except the lowest voltages well up on the scale, resulting in a considerable increase in accuracy.

To increase the accuracy of measurement at high radio frequencies, the entire a-c measuring circuit is mounted in a probe at the end of a five-foot cable, which permits the measurement of voltages directly at the source. Since the cable and the indicating circuit carry only direct current, all effects of long leads are eliminated and an excellent frequency characteristic is made possible. For measurement at extremely high frequencies, the probe terminals can be removed, still further shortening the leads.

For measurements at lower frequencies, where the effect of the leads is not important, the probe and cable may be placed inside the instrument and connections made to terminals on the panel.

A-c operation has been achieved with the stahility of a d-c instrument by means of a built-in voltage regulator. There is no appreciable shift of the zero after a brief warming-up period and variations in the supply voltage do not cause fluctuations in the reading.

The electrical circuits of the instrument are such that the calibration is substantially independent of tube characteristics. For this reason aging of the tubes results in a negligible error, and replacement of tubes affects the calibration only slightly. Tubes are operated under conditions which give exceptionally long life.

SPECIFICATIONS

Ronge: 0.1 to 150 volts in five ramges (1.5-5-15-50150 volts).
Accuracy: $\pm 2 \%$ of full seale at all five ranges, on sinusoilal voltages.
Woveform Error: The instrument is essentially a peak voltmeter valibrated to read $\mathrm{r}-\mathrm{m}-\mathrm{s}$ values of a sine wave, or 0.707 of the peth value of a complex wave. On distorled waveforms the percentage dewiation of the realing from the $r-m$-s qalue may be as large as the pereentage of harmonies present.
Frequency Error: Less than 1% betwcen 20 eycles and 50 megacseles. At 100 megacyeles, the voltuge indicated is about 3% larger than the voltage across the probe terminats.
Input Impedance: About 5 megolims at low atulio frequencies. Since the apacitance between input terminals at the probe is $8 \mu_{\mu} \mathrm{f}$, the iuput Empedance will be lower at ligher frequencics. The resonant
frequeney of the input circhit is alout joh megacycles.
Power Supply: 100 to 180 wolts, ac, 60 or 42 cycles thal two to 260 wolts, 50 eycles (see price list). The instrument incorporates it voltare regulator to compensute for supply wariations over this voltage range. The jower drain is less than 20 watts.
 fier-type, stpplied with the inst"ument.
Accessories: A seven-ioot athechment cord, a pilot lamp, and the three tulses are supplied with the instriminent.
Mounting: Black ctackle-finish alumimum patad mounted in al slielded walnut cabinet.
Dimensions: (Wilth) $91 / 2 \times\left(\mathrm{d}_{\mathrm{cp}} \mathrm{t}_{1}\right) 14 \times$ (leight) 81/2 inches, over-all.
Net Weight: $171 / 2$ pounds.

Type	Poucer Supply		Code Hard	Prire
	Irrequency	Foluge		
726.A	60 cycles	100 to 130	allot	\$165.00
726.A	50 cycles	200 to 260	Altitir	165.00
726-A	42 cycles	100 to 130	A 4.ass	165.00

TYPE 546-A MICROVOLTER

The measurement of smatl a-c voltages presents a problem of some difficulty in consequence of the absence of instruments of sufficient sensitivity for direct measurements. This has resulted in the idoption of a substitution method with which we are more familiar in divert-current measurements. A voltage of sufficient magnitude to be measured accurately on available instruments is impressed mon an accurate calibrated resistance network which can then be adjusted to vary the output voltage to equality with the unknows for which it has been substituted.

In the Type 546-A Microvolter an instrument has been designed incorporating these elements in a form suitable for use over the audio-frequency range.

The attenuator, which is the essential element of the design, consists of a sectionalized network of constant output impedance. The output ratio is cont rolled by switehes for large steps and by a continuously adjustable diat for small steps. The tatter consists of a slide-wire covering a range of two decades and having an exponential seade.

The instrument is completed by a voltmeter on which the input voltage is measured and a coupling transformer at the input end.

Although the transformer has been designed to have a reasonably flat characteristic for andio frequencies, it is evident. since it precedes the volmeter, that transformer losses do not enter into the measurements in any way. For convenience the switching arrangement provides for mantaining constant the imperlance of the atlentator as

seen from the generator side. This is not essential from the standpoint of voltage computations, but it is convenient in avoiding the necessity of readjusting the input power as the attenuation is altered.

This new unit has many applications in measurements involviug low voltages. It is useful for conveniently adjusting the output of vacuum-tube oscillators or other sources of alternating current. Used with the Type 483-C Output Meter or a Type 583-A Output Power Meter it provides all the equipment necessary for measuring gain characteristics.

SPECIFICATIONS

Output Voltage Range: From 1 valt to 1 microvalt for a "relerence voltage" of 2 volts.
Accuracy: For output voltage ratios the error is less than 2% above 100 -microvolt settings. The error is somewhat greater for smaller output voltages. In absolute measurements the characteristics of the copper-oxide voltmeter must be considered. For output voltages greater than 100 microvolts the error is less than $10 \%, \mathbf{1 2 . 5 \%}$ or $\mathbf{1 7 \%}$ at $\mathbf{1 0 0 0}, 5000$, ar 10,000 cyeles, respectively.
Power Source: An audio-irequeney source having an output control and capable of maintaining approaimately 9 volts across 7000 ohms is required. The use of other than the 2 -volt standard reference level
produces proporlional deviations in output.
Input Transformer: The trunsformer is designed to have a rensonably flat characteristic over the audiofrequency range, but, since it precedes the voltmeter, its losses do not enter into the measurements.
Output Impedance: The internal output impedance of 200 ohms must be taken into account when supplying voltage to low-inupedance loads.
Mounting: The insirument is mounted on an aluminum panel in a shielded walnut calinet.
Dimensions: (Length) $10 \times$ (widih) $7 \frac{1}{4} \times$ (heighti) $61 / 8$ inches, over-all.

Net Weight: 8\%/8 pounds.

| Type | Code Word | Price | |
| :---: | :---: | :---: | :---: | :---: |
| $546 . \mathrm{A}$ | $\ldots \ldots \ldots \ldots \ldots$ | $\mathbf{c r o w n}$ | $\mathbf{5 8 0 . 0 0}$ |

TYPE 487-A MEGOHM METER

AN OHMMETER FOR THE MEGOHM RANGE OF RESISTANCE

The Trypa 887 -A Megohn meter indicates directly, with the simplicity of operation of an ordinary ohmmeter, resistance values from 20,000 ohms to 50,000 megolms. This result is achieved by employing a vacuum-tube voltmeter as the indicator in a conventional ohmmeter circuit. The instrument is completely a-c operated and takes only 10 watts of power from the a-c mains.

The megolmm meter can be used for general high resistance testing, as, for instance, the measurement of resistors and of leakage resistance and the location of defective insulation. As with olmmeters, the voltage applied to the unknown varies with the indication, and is between 50 and 100 volts over the greater portion of its range. Consequently, this instrument is not suitable for the location of breakdowns which occur ouly at ligher voltages.

In measuring large condensers with low leakage, the time constant results in equilibrium being reached very slowly. For example, at condenser of 1μ capacit ance, having a leakage resistance of 1000 megolms, could be shown in a few seconds to have a resistance greater than 500 megohns, but perhaps a minute wonld be required to get the resistance within 10 per cent. For many applications in general testing, lowever, the limitations regarding the applied voltage ame the time constant are more than offset by the rapidity of the measurcment and the ease of operation.

Where a higher test voltage or a lower time constant is required, the Type 544 -A Megohm Meter (see page 84) is recommended.

SPECIFICATIONS

Range: 90,000 ohms to 50,000 megolims in four overlapping ranges,
Operation: The instrument is diveet reading, requiring no balancing adjustment.
Scale: Standard ohmmeter calibration with center scale values of $1,10,100 \mathrm{ardl} 1000$ megoliras. Length of scale $3^{11 / 2}$ inches, center decade $18 / 4$ inthes.
Aecuracy: Within 5% from 200,000 olims to 5000 megolims, decreasing for higher or lower wahes.
Tubes: The necessary tubes, 1 type 1-V and 1 lype $8 \overline{0}$, are supplied.

Power Supply: 115 volts, 42 -60 cyeles ac. The power requirement is tea watts.
Accessories: A 7 -foot conneeling cord and spare fuses are supplied.

Mounting: Tie instrument is supplied in a hundrubbed walliut case and is mounted on an engraved blark crackie-finjisl aluminum panel,
Dimensions: (Width) $10 \times$ (height) $8 \times$ (deplh) $51 / 2$ inches

Net Weight: 91/4 pounds.

Type	Code Word	Price
487. A	onion	\$95.00

TYPE 586 POWER-LEVEL INDICATOR

This instrument utilizes the copper-oxide rectifier-type indicating meter, with a seale ralibrated in decibels. It is provided with an adjustable L-type attenualor which is inserted between the line and the indicating voltmeter. The atlennator acts as a multiplier to increase the measuring range of the instrument while mantaining constant the input resistance of the power-level indicator. The assembly is portable, compact, rugged, accurate, low in price, and requires no batteries.

The noving element of the meter is of the high-speed type for the models-DM and -DR, and is normal speed for the more sensitive models -EM and -FR. Because of the meter dynamics a ligh-speed movement camot be achieved with the ultra-sensitive meters of high impedance.

The standard panel finish is black crackle lacquer. In order to matich the finish of other studio or transmiticr equipment, panels for the rack-mounting models are also available to order, finished in either Western Electric or RCA gray, or RCA flat black at an additional price. (See specifications.)

SPECIFICATIONS

Power-Level Range: See price list. All ratings atre for a zero level of 6 milliwats in a 500 -ohn line. Internal Input Impedance: 5000 ohus resistive. There is, therefore, an inserlion loss of 0.8 decibel. Eissentially, no distorlion is introduced inlo the line.
Frequency Chapacteristics: Where is no appreciable error for frequencies up to 10,000 cycles.
Scale Reading: For TyיE 586-DM and Typa; $586-1$) zero level is nt mid scale. The meter is gratualed in 2-decibel sleps between -10 and +6 decibels.

For Trpe 580-EM and TyPe 586 -ER - 10 decibet level occurs at mid sale Micl scale is, however, marked zero. The multiplier switeh is arranged so that at maximum sensitivity its reading combined with that of the meter is $\mathbf{- 1 0}$ decilels.

The multiplier athentator of all models is ardjustable in 2 thecileel steps over a total range of 20 decilsels.
Indicating Element: A copper-oxide-reclifier voltmeter calibrated to read power level in decibels.

Highespeel movenent for models -DM and -])R; normal speed for models -N:M and -ER.

Accuracy: The average error is from 0.1 decileel io 0.2 decibel. Near the lowest reading of the meter the error may be as mucli as 0.5 decibel.
Correction Chart: A clart is supplied showing the correction to lre applied when the meter is uset across impedances other than 500 olims.

Mounting: The Type 586-1)M and Type 586-EM are mounted on an aluminm panel in a polished walnut calinet. 'Tree $586-\mathrm{D}$ R and Type 580 -ELR are designed for monnting on a slamburl 19 -inds relay rack. All switches are back-of-panel mounted.
Dimensions: For the cabinet models, (leng H_{1}) $9^{3} / 8 \mathrm{~s}$ (widht) $4 \frac{1}{4} \times\left(\operatorname{tep}\left(h_{1}\right) 4 \frac{1}{4}\right.$ inches, over-all. For the relay-rack motels, (length) $19 \times$ (widlli) $31 / 2 \times$ (depth) $31 / 4$ inches, over-all.
Net Weight: $37 / 8$ pounds for mhinel models, $31 / 4$ pounds for relay-rack morlels.

Type	Power-Level hange	Mountivat	Code Word	Price
586-DM	-10 to +26 decibels	Cabinet Model	mabit	\$55.00
586-DR	$-1 v$ to +26 decibels	Relay-Rack Model	handy	55.00*
586-EM	-20 to +16 decibels	Cabinet Model	HoNEY	60.00
586-ER	-20 to +16 decibels	Relay-Rack Model	HONOH:	60.00 *
586-P6	High-speed meter for Type 586-DM or -DR		ourmetbell	25.00
586-P5	Normal-speed meter for Type 586-DM or -DR		ourmetroot	20.00
586-Q1	Normal-speed meter for Type 586-EM or -ER		oltrmatpipes	30.00

[^9] PATENT NO'TICE, See Nole fi, hage v.

TYPE 583-A OUTPUT POWER METER

FOR MEASUREMENTS
OF
POWER OUTPUT
AND
INTERNAL IMPEDANCE

This unusual instrument reads directly the amount of adio-frequency power that any given source is capable of delivering. It can be considered to be an adjustable load impedance across which is connected a vollmeter that is calibrated directly in watts lost in the load. Adjustments are provided for an impedance range from 2.5 to 20,000 ohms and for a power range from 0.1 to 5000 milliwatts. In addition to the power scale (milliwatts) on the meter, there is also an auxiliary scale giving the power level in decibels for a reference level of 1 milliwatt.

Many uses for such an iustrument are possible. For instance:
(a) The power that an audio-frequency gencrator will deliver to a load of a given impedance can be found immediately without calculation.
(b) The effect of load impedanse on power delivered can be measured.
(c) An important applieation is in the testing of radio receivers. The meter will serve for the standard selectivity, sensitivity, band-width, and fidelity tests. The auxiliary decibel scale is for this use.
(d) The characteristic impedance of telephone lines, phonograph pickups, vacuumtube oscillators, etc., can be determined by adjustment of the impedance of the power meter until a maxinum reading is obtained. When this oceurs, the inpedance of the meter is set to the impedance of the source under measurement.

SPECIFICATIONS

Power Range: 0.1 to 5000 milliwatis,

Meter: Calibratel from 1 to 50 milliwatts with auxiliary scale reading from 0 db to 17 db wilk 1 milliwatt as reference level.
Multiplier: Multiplies meter power scale ly factors of $0.1,1.0,10$, and 100 . Also adds $-10,0,+10$, and +20 tb to atuxiliary decibel scale.
Frequency Characteristies: Aceuracy varies wil! I requency and impelance setting. Maximum error in full-scule power reading docs not exreed 0.3 db
between 150 and 2500 cycles, uor does il exceed 1.5 db at 20 and 10,000 cycles. The average error is 0.9 db ut 30 and 5000 cycles; and 0.6 db at 90 and 10,000 cyeles.
Maximum error in imperdance does not exceed 7% bet ween 150 and 3000 cycles, nor does it exceed 50% at 20 and 10,000 cycles. The average error is 8% at 30 and 5000 cycles; ind 20% al 20 and 10,000 cyeles. Size: (Length) $10 \times$ (witth) $7 \times$ (height) 6 incles, over-all.
Net Weight: $81 / 4$ pormils.

Type	Conle Word	Price
583-A	A BCSE	\$95.00

TYPE 483-C OUTPUT METER

This is the constant-impedance voltmeter employing a copper-oxide-rectifier indicator that was introduced by the General Radio Company several years ago for measuring the performance of radio receivers. It is, of course, useful wherever audio-frequency voltages are to be measured.
Three impedance values have been selected as the ones most generally needed. Particular attention is directed to the Type 483-C Output Meter which has a voltage range of $0-200$ volts and an internal impedance of $20,000 \mathrm{ohms}$.

SPECIFICATIONS

Voltage Range: 200 volts (2 -volt meters with multipliers of $2,5,10,90,50$, and 100).
Impedance Characteristic: With the multiplier set at " 1 " the impedance of the instrument is that of the rectifice and meter only and hence varies somewhat with applied voltage. The impedance increases approximately 30% for 0.5 volt applied. With increase in multiplier setting the impedance approaches a pure resistance of the rated value. The multiplier resistors are adjusted to within $\pm 2 \%$.
Accuracy of Calibration: Because of the characteristics of the self-contained rectifier, the meters are subject to errors other than that of the d-c meter movement.

With a multiplier selting of two the error in multiplication, because of the impedance variation of the rectifier with applied valtage, is a maximum. The meter will be within 3% and 6% for 2 -volt and 1 -volt inputs, respectively. This net work error is zero on the upper third of the scale and decreuses rapidly for the small deflections as the multiplier setting is increased.

The frequency and temperature errors are con-

sidcrable. Over extreme ranges of temperature and frequency the combined error mey be as great as 25%
Scale Length: $91 / 2$ inches.
Mounting: The copper-oxide-rectifer voltmeter and the multiplier switch are mounted on a bakelite panel which, in turn, is mounted in a polished walnut case.
Dimensions: (Length) $9 \times$ (width) $41 / 4 \times$ (height) 4/4 inches, over-all.
Net Weight: 3 pounds.

Type	Impedanee	Voltage Range	Power Range	Power for Half-Scale Deflection	Cods W'ond	Price
483-C	20,000 ohms	0-200 volts	0-2 watts	0.05 mm	A*OB	\$54.00

THERMOCOUPLES, OXIDE RECTIFIERS

A-c measurements with d-c instruments. Bakelite cases for plug-in mounting. See descriptions, pages 134 to 137.

The Type 679-A Power-Supply unit is designed for gencral laboratory use. It delivers d-c power up to 45 watts at 150 ma and 300 volts, with a no-load voltage of over 400 volts. An additional rectifier circuit supplies 2 ma de at 100 volts. Two separate a-c supplies are also provided at 6.3 and 2.5 volts, from which a total ol 45 watts may be taken.

The unit is primarily designed for vacum-tube circuits but will be found useful in other capacities. The high-voltage input is controlled by a Variac (adjustable auto-transformer) with a control on the panel so that continuous variation of the d -c output voltage (0 to over 400 volts) is possible. Meters on the panel indicate the output voltage and current. The low-voltage de is convenient as a grid supply, and a ground connection can be used on any of the d-e supply terminals. A calibrated potentiometer mounted on the panel controls the low-voltage supply.
Excellent regulation at any output setting is assured by the Variac control and a carefully designed filter, which also insures a very low residual hum voltage.

SPECIFICATIONS

Output Range:

High Voltage; 150 ma at 300 volts, de. No load voltage, over 400 volts, $d k$.
Low Voltage: 2 ma at 100 volts dc.
A-C Voltage: 2.5 and 6.9 volts, giving a total of 45 watts.
Meters: The high-voltage supply outpu: is indicated by an ammeter and a voltmeter moumted on the panel.
Regulation: The regulation of the high-voltage supply corresponds to an internal outpat resistance of 700 ohms for direct current. The 1000 cycle internal output impedance of the high-voltage supply is equivalent to 3.9μ in series with 1.13 ohras. That of the low-voltage supply is equivalent to $2.12 \mu \mathrm{f}$ in series with 0.82 ohm.
Supply: The power-supply unit will operafe from a 105-190 volt, 50-60 cycle, a-c line.

Power Consumption: With the a-c and d-c supplies operating at full load, the power consumption from the mains is about 175 wafts. Under these conditions the loss in the power-supply unit is about 85 watts, including rectifier cathode power.
Hum Voltage: At full-load current the hum vollage of the high-voltage supply is less than 0.1% for all voltages above 150 volts. For lower voltages the per cent is slightly higher.

At full-load current the hum voltege of the lowvoltage supply is less than 0.1% for all voltages. For a load current of 1 ma , the hum decreases to 0.03%. Tubes: One 5 ZS -type and one 80 -type are supplied.
Mounting: The instrument is suitable for cither table or relay-rack mounting.
Dimensions: (Length) $141 / 2 \times$ (depth) $111 / 2 \times$ (height) $78 / 8$ inches, over-all. Panel 19×7 inches.
Net Weight: 41 pounds.

Type	Code JF 'ard	Price
679.A	AFGOT	\$130.00

TYPE 673-A POWER SUPPLY

This is a power-supply unit for general laboratory use. It has a d-c open-circuit voltage of over 2000 volts and delivers 150 ma at 1500 volts. Provision is also made for supplying a maximum of 6.5 amperes at 10 volts ae with a 5 -volt center tap.

Several distinguishing features make the Thpe 673-A Power-Supply unit a very handy piece of apparatus about the laboratory, A knob on the panel gives a continuous control of the high voltage, which is indicated by at meter on the panel. The output current is also indicated by a panel metor. Consequently, besides using the unit as a supply for, say, two 852 -type tubes, it can be operated as a continuously-variable-voltage d-c supply (from below 50 to over 9000 volts). Transformer control in the high-voltage input and careful design of the filter have produced good regulation and low hum voltage. The power-supply unit is equipped with a time switch so that the a-c supply is on about 30 seconds before the d-c supply begins to operate. An auxiliary switch, for the sake of convenience and safety, is supplied to control the high voltage separately.

SPECIFICATIONS

Output Range: The power supply will deliver dircel current up to 150 ma at 1500 volts. The open-cireuit voltage is over $\$ 000$ volts.

The power supply also gives 6.5 amperes at 10 volts ac: The 10 -volt supply is center-tapperl at 5 volts.

Meters: The $\mathrm{d}-\mathrm{c}$ vollage and the load current are indicated by meters mounted on the pantl A panel knob controls the input to the rectifiers.

Regulation: The internal output resistance of the power-supply unit corresponds to about 1100 ohms for load currents of $50-150$ ma. For lower load currents the inlernal output resistance increases to ahout 20,000 ohms at no loar. The 1000 -cycle internal output impertance is equivalent to $1.1 \mu \mathrm{f}$.

Supply: The power-supply unit will operate from a
$105-120$ volt, $50-60$ cycle line. A suitable power cord is supplied will the instrument.
Power Consumption: With the a-c and d-e surplies operating at full load, the power consumption from the mains is abont 380 watts. Under these conditions the loss in the power-supply unit is about 90 watis including rectifier cathorle power.
Hum Voltage: At full-load current the hiun wollage is less than 3 volts or 0.2% of full-load voliage. For lower load currente, the hum decreases.
Tubes: Two s6f-A-type rectifiers are supplied.
Mounting: The instrument is suitable for table or relay-rack mounting.
Dimensions: (Length) 195/8× (deplh) $111 / 2 \times$ (height) 9 inches, over-all. Panel, $1: 1 \times 8{ }^{3}$ inches.
Net Weight: 73 pounds.

Type	Coule Wrow	Price
673-A	AGONY	\$180.00

PARTS AND ACCESSORIES

DESIGN engineers and experimentalists in the radio, electrical, and allicd industrial fields will find in this section a variety of untsial accessories that are obtaimable nowhere clse.

Since 1915 General Radio has manulactured laboratory equipment, frequency-measuring equipment, and components for the Navy, Army, Coast Guard, and other Government services; and for commercial and browdeast
companies, educational institutions, laboratories, and other manufacturers. A reputation has been acquired for building instruments of ruggedness, precision, and dependability.

The parts and accessories which this section will introluce to many new customers have all heen designed for use in our own equipment. Chey measure up in chery way to the quality standards on which our exeellent reputation is luased.

The following list summarizes the contents of this section

RESISTANCE DEVICES

Rheostat-Potentiometers Jage 197-131
Voltage Dividers 131

CONDENSERS

Vuriable Air Condensers 192-194

METERS AND ACCESSORIES

Oxide Rectifier 194
Vacimuth Thermocouples 196
Direct-Current Galwanometer 135

AUDIO OSCILLATORS

Microphone Ihtramer197
AUDIO TRANSFORMERS
Input and Interstage Transformers 198
Output Transformers 140
Wide Range Transformers 142
Impertance-Matching Transformers 144

RACKS AND PANELS

Relay Racks	I'age $\mathbf{1 4 6}$
Iniversal Rack	$1+7$
Unit Panels	$147-149$

Unit Panels
$147-149$

INDUCTORS

$\mathrm{Pl}_{\mathrm{ng}} \mathrm{g}$ in Inductors $\quad 150$
Transmitting Inductors 151
R - F Choke 159
DIALS
Precision Dials 159
Friction-Drive Dials 1.53, 154
Direct-Drive Dials 158,154
KNOBS 155
PANEL ACCESSORIES
Dial Plates $\quad 154$
Switches 156
Switch Contacts $\quad 156,157$
Binding Posts 157
PLUGS AND JACKS
Large and small, single- and double-plug units 158

OTHER UNMOUNTED DEVICES are listed elsewhere in this catalog. These include

DECADE RESISTANCE UNITS	on pages 14 to 18
VARIACS	on pages 8 to 10
VOLUME CONTROLS	on pages 24 to 26
DECADE CONDENSERS	on page 40
AIR CONDENSERS	on pages 30 to 35

RHEOSTAT-POTENTIOMETERS

(VOLTAGE DIVIDERS)

The complete line of adjustable resistors described on the following pages is the direct outgrowth of the need for filament-current controls in vacuum-tube circuits. Other applications are found in all kinds of electrical apparatus where vacuum tubes, resistance bridges and thermocouples are involved.
Units are available from stock with power-dissipation ratings as high as 250 watts and maximum-resistance ranges extending from 0.75 ohm to 200,000 ohms.

Because of the "straight through" shaft construction, these rheostat-potentiometers may be ganged up on the same slaft to provide simultaneous variations of many separateelements under single control. Complicated fader networks may be built up by using flexible couplings or by the substitution of a single shaft of insulating material passing through all of the controls.

All but largest and smallest types are interchangeable on the standard three-hole mounting shown below. When ganged, they may be set up back to buck on either side of a sheet support.

Standard s-hole mounting method for rheostat-potentionseters

AS PANEL-MOUNTING MODELS

Every General Ra:lio rhsostat-potentiometer is furnished ready for panel mounting, as showr in the above photograph, lut every type except one (Тчтғ: 410) can, by a few moments' work with a serewdriver, be converted for topof table mounting is shown on the following payes in photographs accompanying the detailed descriptionoleachunit.

Any potentiometer can also be used as a rheostat for either direction of rotation. There is no off position

TYPE 371 RHEOSTAT-POTENTIOMETER

Rheostat-potentiometers in this series have hieir resistors wound out athin linenhakelite strip which is then bent aroumd the bakelite supporting form. The contact artu is a single blade that wipes the edge of the resistor.

Allowable power dissipation is 20 watts. Values of maximum resistance between 1 ohm and 50,000 ohms can be supplied from stock, but others within the power-rating limit can be built to order.

Jri addition to the so-called "linear" units in which resistance is proportional to the angle through which the blade has turned, a unit having a tapered winding is available. In this (Type 371-'T) the resistance is approximately proportional to the square of the angle, increasing with clochwise rotation of the knob in a panel-momted mit. Other resistor shapes, such as logarithmic tapers, may be ordered.

SPECIFICATIONS

Power Rating: 20 watts; Tyre 371-T, 8 walts
Rotation Angle; 303° (approx.) No orf posilion Shaft: Steel, $1 / 4$-inch diameter.
Knob: Type 637-G.
Mounting: Standard 3-hole; machine screws, nuts, and termplate furmished. Supplied as panel type, easily converted lor table mounting.
Dimensions: Sce sketch on preceding page: $\mathrm{A}=91 / 8$, $B=21 / 2$ inches.
Net Weight: 6 ounces.

Type	Maximum Remistance	Maximum Currem	Cule Word!	Price
$371 . \mathrm{A}$	1Ω	4.5 几	hally	\$4.00
371-A	5Ω	2.0 a	helay	4.00
$371-\mathrm{A}$	1000 §	140 ma	redan	4.00
371-A	2500Ω	90 ma	hefit	4.00
$371 . \mathrm{A}$	5000 ת	(i0) ma	notor	4.00
$371 . \mathrm{A}$	10,000 ?	4.5 ma	Howdy	4.00
371-A	18,000 Ω	30 ma	nuler	4.00
371-A	50,000 2	20 ma	satyk	4.00
*371-T	10,000 Ω	98 ma	sully	4.00

TYPE 214-A RHEOSTAT-POTENTIOMETER

This unit has the same type of construction as the Type 371 Rheostat-Potentiometer described above, except that the winding form is narrower and the power rating and maximum resistance values are, accordingly, smaller.

The resistor is wound on a linen-bakelite strip and the contact member is a single blade that wipes the edge of the winding. Maximum power dissipation is conservatively placed at 9 watts, values of current corresponding to which are given in the price list. Maximum resistance values range from 0.75 to 2500 ohms, hint otleer sizes within the power-rating limit can be built to order.

Linits of this type are more suitahle for battery operated installations where space is at a premium or where critical filament potentials must be maintained.

SPECIFICATIONS

Power Rating: 9 watts, see current rating below.
Rotation Angle: 315°. No off position.
Shaft: Steel, $1 / 4$-ineh diameter.
Knob: Tyre 637-G,
Mounting: Standard 3 -hole; machine screws, muts, not template furnished. Supplied as panel type, easily converled for table mounting.
Dimensions: See sketch on preceding page: $\mathbf{A}=31 / 4$, $13=11 / 4$ inches.
Net Wcight: 5 ounces.

Type	Moximum Resisfance	Maximum Current	Code Word	Price
214.A	0.75Ω	3.5	Shiny	\$1.50
214.A	2Ω	2. 1	RU	1.50
214-A	Ω	1.1	rupal	1.50
214-A	20	0.67	Razol	1.50
214-A	50	425	RA	1.50
214-A	100	300	Rivet	1.50
214-A	200	210	EMPT	1.50
214-A	400	160	Osi	1.50
214-A	1000	95	E	1.50
214-A	2500	60 ma	SYRU	1.50

TYPE 471-A RHEOSTAT-POTENTIOMETER

This rheostal-potentiometer is one of two types Inat have constructional fatures which adapt then for use in ligh-impedance vacummtube circuits. The requirements for this ser vice are severe in that not only must the unit itseff have a high resistance, but, becanse of the low power levels and amplification of all disturbances by the later stages, no contact noise can be tolerated.

In order to meet these requiremente the high resistance is obtaincd by winding the card with tine wire and then protecting it externally from mechanical damage or derangement of the turns by means of a securcly anchored land of linen bakelite.

Low noise levels are assured through the use of a contact arm bearing four separate wiping fingers whose averige contact resistance is essentially constant for any position of the knob. The unit may be mounted directly on a
melal panel withoul the necessity of irsulating bushings, for the insulated shaft removes all possibility of short circuits as well as any Irum that would be introduced by the operator's hand.

The winding form has the same diameter with a slightly greater
 depth than that ol the Type 371 Rheostat-Potentioneter alescrihed on the opposite page, but the aflowable power dissipation is smabler hecause ol the bakelite protecting strip. Values ol tolal resistance as high as ano, 100 ohms are available. Special sizes or tapered models with various characteristics can he buift to orter.

SPECIFICATIONS

Power Rating: JQ wutls.
Rotation Angle: 994 (approx.). No off position.
Shaft: Bakelite, 8/8-inch diameter.
Knob: Type 637-1I.
Mounting: Standard g-hole; machine screws, nuls, and template furnished. Supplied as jranel type, ensily converted Ior table monnting.
Dimensions: See sketch on second preceding page: $\mathrm{A}=31 / 8, \mathrm{~B}=25 / 8$ inches.
Net Weight: 0 ounces.

Ty/	Harimum Resistance	Maximum Current	Code Word	Price
471-A	100Ω	3800 mat	Equir	\$6.00
471-A	1000Ω	$10 \div 0$ т пи	Elthsm	6.00
471-A	10,000 a	93.0) cma	LuECT	6.00
471-A	50,000 Ω	14.7 nut	Enous	6.00
471-A	100,000 Ω	10.4 mat	Erate	6.00
471-A	200,000 Ω	7.3 m14	Eske	6.00

TYPE 314-A RHEOSTAT-POTENTIOMETER

O. The same mechanical and electrical design as the Type 47t-A Rheostat-Potentioncter described above, this unit differs from it in having the shorter wiuding form. It has the protected resistor, the bakelite shatit, and the 4 -finger contact arm.

The winding form has the same depth, diameter, and arrangement of monnting holes as the Typu 214-A Rheostat-Potentiometer described at the holton of the opposite page,
but hecausethewinding is protected, the allowable power dissipation is smailer. Resistances as ligh as $20,010 \mathrm{~m}$ ohms are atwailable from slock, and special sizes within the power-rating limit car be built to
 oriler.

SPECIFICATIONS

Power Rating: 6 watts,
Rotation Angle: 294° (appros.) No ofs position.
Shaft: Bakelite, $3 / 8$-inch diameter.
Knob: Type 6s7-II.
Mounting: Standart 3-hole; machine screws, mits, and template furnislred. Supplied as panel type, easily converted for table mounting.
Dimensions: See sketch on secont preceding page:
$\mathrm{A}=31 / 4,1 \mathrm{~B}=13 / 8$ inches.
Net Weight: 6 ounces.

Type	Maximnm Resistonee	Maximsm Current	Code Worl	Price
314-A	2008	1465 ma	ENTTE:	\$4.00
314-A	600 a	\$3 ma	Fi, ¢OW	4,00
314-A	2000Ω	58 ¢¢	FNEMY	4.00
314-A	6000Ω	90 ma	Enjoy	4.00
314 A	20,000 2	10 maza	EI	4.00

PARTS AND ACCESSORIES

GENERAL

TYPE 533-A RHEOSTAT-POTENTIOMETER

This is a heavy-duty unit, which can dissipate 250 watts under continuous load. The frame is of moulded bakelite, and the resistance element is wound on an asbestos-covered ahuminum strip that serves to distribute the heat to be dissiputer to all portions of the element for better radiation. Tlis unit, and the one listed below, should not be used in closed compartments or where a mears of ventilation has not been frovided to keep the temperature of associated ipparatus at a reasomable value.

Both types are equipperl with three Try'e [38-V combination binuling post and phog jacks set on standard spacing so that tight plug-in connections may be made to obtain immeWiately a rheostat of either direction of rotation lor increased resistance, or a fixed resistance from which a variable tap is to be taken.

Seven maximum resistance values are carried in stock but others of the same power rating can be built to order.

SPECIFICATIONS

Power Rating: 250 watts, see current rating below, Rotation Angle: 305° (approx.), Mo off position.

Shaft: Steel, $8 / 8$-inch diaructer.
Knob: Trpe 687-4
Mounting: Table type supplied, easily converted for patel mounting; see accompanying sketch. Machine screws, muts, and a drilling template are furnished.
Dimensions: See accompanying sketeh.
Net Weight: $17 / 8$ ponnds.

Type	Muхітита Resistance	Maximum Current	Code Nord	Price
533-A	1Ω	15.8	MOLAR	\$6.00
533-A	3 a	0.1 :	monad	6.00
533-A	108	5.0 a	moral	6.00
533-A	30Ω	2.3 a	moymo	6.00
533-A	100π	1.6	Mlegy	6.00
533-A	300Ω	0.9 a	MTMMMY	6.00
533-A	600π	0.6 a	MUSTY	6.00

TYPE 333-A RHEOSTAT-POTENTIOMETER

This unit, althougl smaller, has the same constructional features as the 'True 533-A TRheostat - Potertioneter descrihed above. It has the standard 3-hole monnting which makes it interehangeable with the units shown on the next page.
Its jower dissipation rating is 100 watts.

SPECIFICATIONS

Power Rating: 100 walls.
Rotation Angle: 289° (approx.). No off position.

Shaft: Steel, \%/8-inch diameter.

Mounting: Standard 3-hole; machine screws, nuts, and template furnished. Supplied as panel type, casily converted for table mounting.
Dimensions: See sketeh on third preceting page: $A=4,13=95 / 8$ inches.
Net Weight: 11 ounces.

Type	Maximurt Resistance	Maximum Cutrent	Code Word	Price
333-A	1Ω	10.0 a	valor	\$4.00
333-A	30	5.8 a	varid	4.00
333-A	10Ω	32a	WFINOS	4.00
333-A	300	1.9 a	vieil	4.00
333-A	100Ω	1.04	vicor	4.00
333-A	300 ת	0.6 at	V1L	4.00
333-A	600Ω	0.4 a	viper	4.00

TYPE 301-A RHEOSTAT-POTENTIOMETER

Rated at a naximum yower dissipation of 5 watts, this is the smallest rheostat-potentiometer we manufacture. Because of its compactuess it is ideal for filament controls on small tubes.

SPECIFICATIONS

Power Rating: 5 walts; 8 watts on $10,000 \Omega$ and 20,000 s? models.
Rotation Angle: s. 5° (appros). No off position,
Shaft: Steel, $1 / 4$-inch diameter. Knob: TrPE 687-A.
Mounting: lanel type supplient; cusily converted for table mounting. Machine screws, nuts, and template furnished.

Dimensions: See accompanying sketch.
Net Weight: 3 onnecs.

Type	Marimum Thesistiance	Haximum Current	Code Word	Price
301-A	65	14	PALSY	\$1.00
301-A	12 ¢	0.7 a	REMIT	1.00
301-A	258	0.5 a	Renew	1.00
301-A	2008	175 ma	lembus	1.00
*301-A	10,000	17 ma	CLR ${ }^{\text {cti }}$	1.50
*301-A	$20,000 \Omega$	12 ma	crumb	1.50
* Supplird with linen-bakelite protectindi strip.				

TYPE 410-A RHEOSTAT-POTENTIOMETER

This is identical with the TYres $301-\mathrm{A}$ RheostatPotentioueler described ahove, except that it is equipped for single-hole mounting, often a. convenient feature. 'Phis unit canmot ordinarily be used on metal panels.

SPECIFICATIONS

Power Rating: 5 watls.
Rotation Angle: 254° (approx). No orr position
Shaft: Steel, $1 / 4$-inch diameter. Knob: Ty 1 P6 637-A.
Mounting: Single-hole panel type only.
Dimensions: See accompanying skelch.
Net Weight: 8 ouncers.

	Marimum Resistance	Maximum Current	Code Wrom	Pring
410.A	6Ω	$1{ }^{1}$	SABOT	\$1.00
410-A	129	0.7	Salok	1.00
410.A	25Ω	0.5 a	8alty	1.00
410.A	200Ω	175 mat	SATIN	1.00

TYPE 154 VOLTAGE DIVIDER

These adjustable voltage dividers have rotary taps instead of the usual sliders. Type 15t-A is similar in constructiou to Type $314-1$ Rheostat-Potentiometer;'Types 1;"t-B is similar
to Tyee 471-A. Three adjustahle taps are supplied on cach motel. Six values of total resistance are available.

TYPE 568 VARIABLE AIR CONDENSER

This is at condenser of rugged conslruction for use as a tuning clement in short-wawe receivers, tranmitters, and waverneters. It is designed for tandem monnting, a hollow slait permitting the use of a single long hakelite or metal shatt for driving several units. The isolantite end plates help to keep the lossea at a minumunn, Conlact to the rotor is marle through
an eight-fingered conical bearing hept tunder heavy spring pressince, and, in order to reluce resistance, each plate stack is soldered into an integral piece before assembly.

Two sizes are available, one of 175 - $\mu \mu \mathrm{f}$ with l_{1} straight-linc-capacitance plates and the other of $50-\mu \mu{ }^{\prime}$ with straight-line-frequency plates at decreasing Irequency with clockwise rotation.

SPECIFICATIONS

Plate Shape: Straight-line capacilance for Tyrba beis-D; approximately straight-line frequency for Tyie exts-K.
Supports: End plutes are of isolantite, treater to jrevent moisture absorplion.
Low Losses: Rwot is approximately $0.0 \mathrm{0} \times 10^{-12}$.
Maximum Voltage: 500 volts, peak.
Knobs: None supplied. Shaft dianeter, 8/8-inch; rotation angle 180° for Tyre afis-D, 270° for Tyte $568-\mathrm{K}$,
Mounting: Sce sccompanying sketch. Drilling tenplate and S Lat-heul serews are furnished.
Dimensions: Sce sketel,
Net Weight: 34 pound.

 See Notes 3, 10, puge w.

OTHER AIR CONDENSERS

Lakoratory-type condensers, both mounted and ummounted models, are listel on pages 30 to 85 . These inchade precision condensers, wuxiliary balancing condensers for bridges, and condensers suitable for use in laboratory instranents.

TYPES 334 and $335-Z$ VARIABLE AIR CONDENSERS

Left to right: Type 334-F, Tyre 335-Z. Type 344-R, and Type 334-Z

This group of condensers is available in a varicty of sizes for general experimental use. They have soldered brass plates and netal end plates which are grounded to the rotor stack and to the shaft. Insulation is of hard rubber.

Mociels rated in the price list at 1500 volts peak, have double the plate spacing of those raterl at 500 volts, peak. The former are intendel for use in power oseillators or intermediate stages of medium-power transmitters.

SPECIFICATIONS

Plate Shape: Approximately straight-line wavelength, decreasing wavelength for clockwise rotution, for all except Type 335-Z which bas straight-linecapacitanoc plates.
Supports: Two small sections of first-quality hard rubleer support the stator.
Low Losses: $R \omega C^{2}$ is approximately 0.07×10^{-12}.
Knobs and Dials: None are supplied, Shaft diameter, $1 / 4$ inch; rolation angle, 180° for all sizes.

Tyres $334-Z$ and $885-Z$ have halanced rotors; all others, a counterweight.
Mounting: Standard General Radio 3-hole monnting. See accompanying sketch. Drilling Icmplate and 3 flat-head screws are furnished.

Four removable feet are [urnished with each of the higl-vollage models.

Terminals: See illustration.
Dimensions: See accompanying outline drawing. Depth (dimension A) is given in the price list.

Tupe	Nomival Capacitance		Maximum Peak Voitrige	Depth (4)	Net Weight	Code Word	Price
	Maximum	Minimum.					
335-Z	$1150 \mu \mu \mathrm{f}$	$50 \mu \mu \mathrm{t}$	500 v	$51 / 4 \mathrm{in}$.	$21 / 8 \mathrm{lb}$.	mogus	\$6.00
334-F	$500 \mu \mu \mathrm{~F}$	$20 \mu \mu \mathrm{C}$	500 v	35/16 n .	$11 / 2 \mathrm{lb}$.	bean	3.25
334-K	$250 \mu \mu \mathrm{~F}$	$15 \mu \mu \mathrm{f}$	500 v	$25 / 8 \mathrm{in}$.	1 lb .	HELOW	2.75
334-Z	$500 \mu \mu \mathrm{l}$	$95 \mu \mu \mathrm{C}$	1.500 v	101/8 in.	$93 / 8 \mathrm{H}$.	Hociey	10.00
334-R	$250 \mu \mu \mathrm{~F}$	$30 \mu \mu \mathrm{f}$	1500 v	$1{ }^{1} / 1 / 2 \mathrm{in}$.	2 th.	IHSON	5.50
334-T	$100 \mu \mu \mathrm{l}$	$15 \mu \mu{ }^{\text {f }}$	1500 v	$31 / 4 \mathrm{in}$.	$11 / 8 \mathrm{lb}$.	bllly	2.75
334-V	$50 \mu \mu \prime$	$10 \mu \mu \mathrm{f}$	1500 v	25/8in.	$5 / 8 \mathrm{lb}$.	Hipeos	2.50

TYPE 368 VARIABLE AIR CONDENSER

Type 368-C

True sfix-B

Type ${ }^{\text {S6s-A }}$

This condenser is useful as a balancing or vernier condenser in various vacum-tube circuits, and many amateurs use it as a tuning condenser in receivers for the ligh-frequency (short-wave) bands. It has a single, isolatite
end plate, simgle bearing, and can be used for single-hole panel mounting as well as for mounting on a baseboard by means of the angle brackel.

SPECIFICATIONS

Capacitance Range: See price list.
Plate Shape: Straight-line capacitance.
Support: A single, isolantite end plate supports the entire assembly.
Low Losses: RoC ${ }^{2}$ is approximately 0.004×10^{-12}.
Maximum Voltage: 500 volts, peak.
Knab: Type B37-A Knoh supplied.
Mounting: Bushing for single-hole panel mounting; bracket for baseboard mounting. See sketch.
Dimensions: See sketel and price list.
Net Weight: Approximately 3 ounces, sll sizes.

Type	Caparitance		Depth (X)	Code Word	Price
	Max.	Min.			
368-A	$15 \mu \mu$	$9 \mu \mu{ }^{\text {a }}$	11/4in.	HLILy	50.75
368-B	$50 \mu \mu \mathrm{l}$	$3 \mu \mu \mathrm{f}$	r3/16 in.	nuris	1.00
368-C	$100 \mu \mu \mathrm{~F}$	$4 \mu \mu \mathrm{f}$	11/2in.	aztile	4.50

TYPE 492-A OXIDE RECTIFIER

One kind of junction of copper oxide has the property of unilateral conductivity. The Type 492-A Oxide Rectifier consists of tour copper-oxide rectifier units arranged in the form of a bridge, thus providing full-wave rectification of an applied alternating voltage. The rectifier is useful for operating relays and for measuring alternating voltages hy meuns of il-c instruments.

The unit is offered in its present form for experimental purposes and it must lee realized in this connection that chauges in both sensitivity and frequency response with output load and impressed vollage are to be expected. Fixed resistors can be inserted in series or in shunt with the rectifier unit to reduce these

A Trpe 408-A Oxide Rectifier and a Tree 874-kJ Mounting Base
apparent variations. Type 500 Resistors are recommended.

SPECIFICATIONS

Frequency Error: The rectifer may be used without appreciable frequency error at frequencies below 5000 eycles per second.

Temperature Error: Temperature errors of about $i \%$ may be expected between normal extreme temperatures. Maximm sensitivity is obtained with a. load of 5000 to 7000 ohms. This value should be used when the instument is operating a selsy. If at 1 -milliampere neter of 400 - or 500 -olims zesistance is used, full-scale deflection will be olstaines at about 2 volts across the rectifier input.

The maximm current output froms the rectifier should not excecd 15 m , nor should the ingressed voltage exceed 3 volts.

Ohvously, the apparent change of imperlance with resistarece can be greatly reduced by proper use of series and shunt resistance on the input side.

Mounting: As illustraterl. Plugs fit Typs 274-R, Mounling Base as slown. The base is not supplied.

Dimensions: (Length) $2 / 8 \times($ lyceadh $) 12 / 8 \times(\mathrm{deph} h)$ $3 / 4$ inclies, exchasive of plags.

Net Weight: 2 ounces.
$\left.\begin{array}{c|c}\text { Type } & \text { Conde Word } \\ \hline 492-\mathrm{A} & \text { roors }\end{array}\right)$

TYPE 588-AM DIRECT-CURRENT METER

This is a direct-carrent galvanometer having full-scale sensitivity of 500 microampreres and a resistance of 10.0 ohas (5 millivolt 3) which adapts it for use in conjunction with TYres 498 Thermocongles. Since cach thermocouple must be individually calibrated, the scale is laid out with 50 cqual divisions marked from 0 to 50 , thus making casy the preparation and reading of calibration curves. The meter is supplied with the Type 298-B Meter Mounting which has jacks for plugging in the thermoconple.

The input terminals are set on the General Radio standard 3/4-inch spacing to take all double plugs of the Trp'e 274 series.

This meter may also he used wilh the Type 492-A Oxide Rectifier, described previously.

SPECIFICATIONS

Range: 0 to 500 nicrommperes full scale.
Resistance: $10 \mathrm{ohms}, \pm 0.5 \%$.
Scale: The $21 / 5$-inch scale is divided inlo 50 equal divisions marked 0 to 50 .
Calibration: Full-scale deflection is adjaster to within 9% of the specifed value of 500 microamperes. Other points are not calibrated, but de-
flection is approximately proportional to current over the enlire range.
Adjustment: A screw is provided in the glass face for making the zero adjustment.
Dimensions: (Length) $57 / 8 \times$ (width) $313 / 16 \times$ (leight1) 2 $27 / 8$ inches.
Net Weight: $11 / 8$ pounds.

Type	Range	Code Word
588-AM	$0-500$ microsmperes	oukmermisit

TYPE 493 VACUUM THERMOCOUPLE

Thie vacuum thermocouple presents a cottvenient means for measuring high-frequency curreut. It consists of a junction of two dissimilar metals which, when heatel, sets up a direct voltage capable of actuating a d-c indicating meter.

This type of instrument is a true integrating ammeter since the d-c meter reading is a lunction of the r-m-s current in the heater circuit. For this reason a thermocouple and meter give results that are independent of wavelorm, and frequency errors car occur only at frequencies so high that the stray capracitauces in the couple mounting become significant (beyond 20 Mc). The couple may be calibrated on direct current.

Both the contact type and the separateheater type are avairable. In the contact type the heater circuit is in elcetrical contact with the couple circuit. In the separatc-hcater type the heating element is separated from the couple junction by a small bead of ghass, thus electrically insulating the two circuits white providing good thermal contact.

The contact-type couples are easier to buiid and consequently less expensive, and yet our method of building the separate-heater models

Type 498 Thermocouples are mounted it a bakelite case with plugs to fit a Type 274-R.J Mounting Base
has been so greatly improved that a comparable degree of sensitivity is obtaned. Sepmate-heater couples can, of course, be used at high frequencies with fewer precautions against the effects of stray capacitances to ground.

Thermo-junctions are mounted in an evacuated glass bulb. The vacuum redaces heat conduction from the couple as well as the effect of external temperature variations. The glass bulb is surrounded by felt and mounted in the bakelite container shown irr the illustration, ready for mounting in a Type 974 -RJ Mounting Base.

SPECIFICATIONS

Type of Couple: The type number " 493 " is used to tesignate all thermocutples described here. Contact-type thernocouples are indicaled by means of a single fetter which also designales the heater current, e.g., $493-\mathrm{A}$. The letter "I1" is used to iuticate a separate-benter type of couple, e.g., 493-HA.

Couple Resistance: The resistance of all couples is edjusted to hetween 10 and 19 ohns, the value engraved on cacth nameplate bcing accurate to 0.1 ohm of the actual comple resistance. This is a significant specification since the user can select a meter of the proper resistance and sensitivity to give fullscale deflection without overloading the thermoelement by considering the couple to be a generator of internal resistence equal to the couple resistance and developing an oper-circuit voltage of 10 millivolts when the heater current is that given in the table on the next page.

Heater Resistance: Heaters are adjusted to within $\pm 10 \%$ of the values given in the table. The actual value engraved on the nameplate is given to within 0.01 olim for Txpris $498-\mathrm{A}, 493-\mathrm{C}$, $493-\mathrm{HA}$, and $493-\mathrm{HC}$; to within 0.1 ohm for Types 493-E and 493-HE; and to within 1 olim for Types 493-H, 493-K, $493-\mathrm{HH}$, and $493-\mathrm{HK}$.

Electrical Sensitivity: The price list gives the heater current required to produce 10 millivolts across the couple terminals on open cirenit. This value is held to within $+10 \%$ and -15%.

Thermal Sensitivity: 26 microvolts per degree Fahrenheit.

Overload: All heaters will withstand a continuous overloat of 50% of the current given in price list.

Coefficient of Resistance: Couple elements, 0.00013 per degrec Falirenheit; heater 0.00009 per degrec F tilurenheit.

Meter: Type $588-A M$ Direct-Curmenl Meter is recommended for use with these couples.

Mounting: Mounted in twakelite case, as illustraterl, witl phlugs to fit Tyipe 274 Mounting Bases having four jacks. The Typr 2\%4-RJ Mounting Base is recommended.

Dimensions: (Tength) $21 / 8 \times$ (breadth) $13 / 8 \times$ (depth) $3 / 4$ inches, exchusive of plugs.

Net Weight: 2 ounces.

CONTACT-TYPE COUPLES

Type	Heater Rexistance*	Current to Give 110 Milligolts Open Circait	Corde Word	Price
493-A	0.5Ω	300 113	FCNNY	\$12.00
493-C	2Ω	1000111	roccis	12.00
493-E	10Ω	㖪1แ4	FOLIAY	12.00
493-H	100 2	8 \%1\%	FOHAY	12.00
493-K	450Ω	4.5 m111	FORCM	12.00

SEPARATE-HEATER TYPE COUPLES

Type	Healer Resistunce*	Current to Give 10 Millitedis Open Circuit	Code ${ }^{\text {r mad }}$	Price
493-HA	0.5Ω	300 ma	Eager	\$15.00
493-HC	2Ω	100 mat	EDICT	15.00
493-HE	10Ω	2.5 mat	Eatcly	15.00
$493-\mathrm{HH}$	100Ω	8 nia	Easel	15.00
493-HK	450Ω	4.5 ma	EDIFY	15.00

*At rated current.

TYPE 572-B

MICROPHONE HUMMER

SPECIFICATIONS

Frequency: 10010 cycles $\pm 10 \%$.
Output: 15 milliwatts, maximum.
Internal Outpul Impedance: 10 or 300 ohms.
Power Supply: This oscillator is designed to operate from a $41 / 2$-volt battery, Burgess No. 2370 , or equivalent.
Mounting: Supplied unmounted as illustraled.
Dimensions: (Length) $31 / 4 \times$ (wilth) $21 / 8 \times$ (lieight) $15 / 8$ inclies, over-all.
Net Weight: 9 onnees.

This is an electro-mechatuical oscillator in which the frequency is determined by a tumed reed. It is intended for use as a low-power, a-c source for bridge and other measmrements where extreme purity of wavelorm and frequency stability are not essential. The waveform may be improted by the addition of a $0.5-\mu f$ conderser, mounting holes for which are provided.

AUDIO-FREQUENCY TRANSFORMERS

In this section is described a complete litue of high-quality audio-frequency transformers, including models designed for vacuum-tubeinput, vacuum-tulbe-interstage, vacuum-tubeoutput, impedance-matching, and circuitisolation uses.

These transtormers have lap-jointed laminated cores of the best grade of silicon steel, the use of which results in the unusually good frequency characteristics that are obtainel. By reason of the high current that can be tolerated before saturation occurs, parallel plate feed does not have to be used under normal operating conditions. The transtormers are unallected ly mechanical shock, are shielded against electrostatic fields, and, because of thorough 1000 -volt insulation, they are prool against breakdown under transient surge peaks. They may be used in permatent installations with the knowlenge that they will retain their eharacteristics through years of use.

To preserve the symmetry of push-pull tapped windings so that subsequent stages
may be truly balanced, the coils of the vacumm-tube-interstage transformers are built up in alternate primary and balanced secondary layers. This construction increases the coupling coefficient of the transformor and decreases the distributed capacitance of both windiugs, therefore exteriding the upper-irequency limit without introducing high-frequency resonance peaks on open circuit (interstage) operation.

For use in high-fidelity circuits with unbalanced slages, the light additional loadings recommended in the tables will preserve the frequency characteristics to well within the limits stated. All ratings are conservative and represent the performance that may be expected under the most unpromising conditions.

Experimenters and development engineers will find in these transformers reliable units having negligible insertion losses when they are properly terminated. They may be used without fear of distortion in the many communication, amplifier, line, brilge, balanced. and unbalanced circuits encountered in engineering work.

VACUUM-TUBE-INPUT AND -INTERSTAGE TRANSFORMERS

INPUT TYPES

Carbon microphones, pickups, and mixer sources of from 50 ohms to 400 ohms internal impedance may be matched to a grid through the use of the Type 58.5-M or Type 580-M2 Transformers diagramed above.

Retlectionless line termination for lines between 400 and 600 ohms and coupling to either balancef or unbalanced amplifiers may be obtained with the Type: 54l-G Transformer which is designed especially for this service.

INTERSTAGE TYPES

For the intermediate stages the Typlis 541-J Transformer will meet all possible arrangements of either single-tube or push-pull connections. It will work from sourees ranging from 1000 to 5000 olms in impedance by using lalf the primary winding.
Where a greater interstage voltage step-up is desired for unbalanced amplifiers at the expense of a narrowed frequency range, Type $585-\mathrm{H}$ is recommended.

SPECIFICATIONS

Use: The most common uses of the transformers are suggested in the second column of the following table. Values of sonrce impedance and primary direct current have been chosen for tuhes that are most frequently encountered in praclice.
Frequency Range: The talle gives the frequency range over which the voltage ratio is less than $x d b$
below its walue on the llat portion of the characteristic. This range holds for operation "Out of" a source having the impedance shown in coluon three and into the gricl or grids of the sucecerlingt stare. For values of source impedance between those tabulated, the frequency range may be foupd by direct interpolation.

The " Fr i, $D C$ " column gives the normal primary current for the transformer when working out of a single tube or the permissible current unbalance when working out of tubes in push-pull. The epecified frequency range will be obtained with this value of current. The low-frequency limit is decreased by approximately 25% when no direct current flows. The effect on the frerudency characteristic of a 100% inerease in " $P r i$. $D C$ " is negligible at freguencies greater than 80 cycles.
Turns Ratio: The ratio ol Iurns of the whole primary winding to the whole secourdary wimding is given in the "Turns Rofio" columu of the table.

Primary Winding: The 60-cycle inductance of the whole primary as measured with the tabulated
 column. The maximum value of ellrent that may be applied to any part of the primary is stated in the "I Mar." column.

Mounting: Each transformer is monnted in a standard drawn-strel, was-filled Model 13 case, illustrated on the next page.
Dimensions: See dimensioned drawing, Morlel 13 case.
Net Weight: All types, 3 pounds.

Type	Use	Frequency Runge (Down Q db) ${ }^{\text {P }}$				Turns ${ }^{1}$ Rotio	Primary		Code Word	Price
		$\begin{aligned} & \text { Out of } \\ & \text { (ohms } \end{aligned}$	$\underset{(\mathrm{ma})}{\mathrm{V} \cdot \mathrm{DC}}$	From (omeles)	$\begin{gathered} \text { To } \\ \text { (cyeles) } \end{gathered}$		$\begin{aligned} & L_{1}^{1} \\ & (h) \end{aligned}$	$\underset{(\mathrm{max})}{\underline{M a x}}$		
	$\begin{aligned} & \text { P-P Plates } \\ & \text { to } \\ & \text { P-P Grids } \end{aligned}$	$\begin{aligned} & 20,0000^{3} \\ & 10,0000 \end{aligned}$	$\begin{aligned} & 12.2 .55^{2} \\ & 0.4^{2} \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 13,000 \end{aligned}$		$\begin{aligned} & 150 \\ & 140 \end{aligned}$			
541-J	$\begin{aligned} & \text { One Plate }{ }^{4} \\ & \text { to to } \\ & \text { P-irids } \end{aligned}$	$\begin{aligned} & 16,000 \\ & 10,000 \end{aligned}$	$\frac{2.5}{5}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 11,000 \\ & 13,000 \end{aligned}$	$\begin{gathered} 1 \\ \text { to } \\ 2.1 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	1.5	ATHOR	\$7.50
	$\begin{aligned} & \text { One Plate }{ }^{4} \\ & \text { to } \\ & \text { One Grid } \end{aligned}$	$\begin{gathered} 16,0000^{5} \\ 10,0000^{6} \\ 5000 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \\ & 28 \end{aligned}$	11,000 11,000 12,000		$\begin{aligned} & 75 \\ & 6.5 \\ & 35 \\ & 35 \end{aligned}$			
585-H	$\begin{gathered} \text { One Plate } \\ \text { to } \\ \text { One Grid } \end{gathered}$	10,000	5	. 50	7000	$\begin{gathered} 1 \\ 10 \\ 3.2 \end{gathered}$	40	1.5	TPP9	6.00
541 G	$\begin{gathered} \text { Line or Mixer } \\ \text { to } \\ \text { P'P Grids }^{\text {G/ }} \\ \text { Line or Mixer } \\ \text { to } \\ \text { One Grid4 } \end{gathered}$	$400-6004$ 10060100^{9}	-	30 30	$\begin{aligned} & 13,000 \\ & 18,000 \end{aligned}$	$\begin{gathered} 1 \\ 10 \\ 9.7 \end{gathered}$	8	30	Aheam	10.00
585-M2	Single- or Double-Button Microplione to Single Grid	$\begin{gathered} 100 \\ 2001 \end{gathered}$	$\begin{aligned} & 5^{2} \\ & z_{0} \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7.500 \end{aligned}$	$\begin{gathered} 1 \\ \text { to } \\ 13.8 \end{gathered}$	9	80	tarhy	6.00
585-M	Single-llution Mierophone to Single Grid	$\begin{array}{r} 800 \\ 50 \end{array}$	20	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 7,160 \\ & 8000 \end{aligned}$	$\begin{gathered} 1 \\ \text { to } \\ \$ 7.8 \end{gathered}$	0.7	100	tarby	6.00

${ }^{1}$ Data are for whole of taphed wisulings.
${ }^{2}$ De lior 10% unhalance in push-pull connetion.

${ }^{\circ}$ Cornect 100,0000 uctoss each half of secondary. Withoul sesigtors response is up 2 th at 71,000 cycles.

To retlect exactly soth to primary, commect $\$$, 0000 across each lualf of secondaty; for single-grid use, hightitequency
tinnt is then 20,000 cycles.
${ }^{-}$Connect 35,00012 bel ween G and F.

SPECIAL TRANSFORMERS

The General Radio Company has liad wide experience in the custom design and production of transformers to meet requirements not covered by stock models. Among lluese types are transformers with extra and monitoring windings, transformers to operate in mixer circuits of unusual impedance, and to simulate the characteristic of the human ear. Special
transformers for the tripping of control circuits as well as transiomers for inclasion in recorditg seismographs and other scientific research instrumerts can also be supplied.

Prices will be quoled on inquiry. Please state desired frequency characteristic and the values of generator and load impedances between which the transformer is to work.

VACUUM-TUBE OUTPUT TRANSFORMERS

An output traısiormer may be selected from the four shown below to couple a vacuum tabe to all but the most unusual values of line or speaker impelances. For a large number of these special cases tlesigns are already on hand with the result that these types may be furnished without undue expense or delay.

TYPE 541-C

The 'Tyne 5th-C 'Transiormer is available for output uses where it is desired to couple a pus ${ }_{1}$-pull, 4000 - to 19,000 -olim output stage to the voice coils of oneor moredynamie speakers. With maltiple loads the optimum impedance ratio of 1800 to 1 should govern the choice of arrangement of secondary counections.

This is the transformer recommended for use with tubes of the following types: $10,31,40 ., 46$ (Class A), 49 (Class A), 59 (Class A), $71-\mathrm{A}, 89$ (Class A), and 1!9-A.

The Type $\mathbf{5}$ itid Transformer is a universal output transformer for use with two 2A3 tubes in a halauced (push-pull) stage, although use of
generator impedances between 700 and 2000 ohims will cause no appreciahle change in the frequency characteristic.

The choice of a secondary tap and the arrangement of the speaker connections should be such as to load correctly the output stage. The load presented to the tubes will be the transformer load multiplied by the square of the tums ratio of the transformer for the particular secondary tap used. In particular, the correct load for the 9 A 3 tuhes varies, depending on whetlier fixed bias or self-bias is used. The table shows the best comections.

Loud Impedance		Terminals to Thich Load is Connected
(Self-Bius)	(Fised Bams)	
1.5-3 ahms	1-2 ohms	1) 2
9-5.7 ohms	2-4 ohuns	()-4
5.7-12 ohmı	$4 \cdot 10$ obms	0-8

Type 541-P Transformer will feed lines of from to0 to 600 ohms inperlance from a push h_{-} pull stage of output tubes. Its excellent characteristic allows it to be used indiscriminately to intercanneet high-fidelity systems with no loss in the over-all frequency runge. This transformer is also recommended for feeding any batanced or unbalanced amplifier output into a line-inpedance-level mixer system, or for use in the output stage of a microphone pre-amplifier.

General Rudio transformers are mounted in the three sizes of cases shown by the samples above

SPECIFICATIONS

Use: The most common uses of the transformers are suggested in the second colume of the following table. Values of sonrce and load impedances and primary direct current have been chosen for condilions that will most frequently be met in practice.
Frequency Range: The table gives the frequency range over which the voltage ratio is less than 2 db below its walue on the flat-top portion of the characteristic. This range holks for operation "Olut of" at source having the impedance shown in column three and "Into" " load of value shown in column tour. For values of somree and load impodances between those tabulated, the frequency range masy be found by direct interpolation.

The "Pri, DC" column gives the normal primary current for the transformer when working out of a single tuthe or the permissitble current unbalunce with push-pull input circuits. The specified frequency range will be oblained with this value of current. The low-fiequency limit is decreased by approximately 25% when no direct current flows.

Turns Ratio: The ratio of turus of the whole primary winding to the whole sccondary winding is given in the "Turns Ratio" coluwn of the table.

Primary Winding: The 60-cycle inductance of the whole primary as neasured with the tabulatel walue of "Pri, DC" flowing is given in the " L " column of the table. The maximum value of eurrent that rasy be applied to any part of the primary is stated in the "I Max," column.

Mounting: Each transformer is mounted in a standard drawn-steel, wax-filled Model B case. This is illustraterl on the opposite page

Dimensions: Sce the dimensioned drawing, this page, Model B case.

Net Weight: 3 pounds.

Dimensions for standard Gencral Radio transfomber-moming cases

TYPE 741 TRANSFORMERS

FREQUENCY RANGE

50 TO 200,000
CYCLES PER SECOND

T'ype 741 Tansformers are intended for use in vacuum-twhe amplifier cireuits where a wide range of frequencies must be transmitted. They are useful in many fhases of experimental investigation at carrier and low-radio Irequencies, such as wide-range andio circuits, facsimile transmission, experimentuI television, and amplifiers for use with cathote-ray oscillographs.

A high-permeability niekel-iron alloy is used for the core material. Similar alloys have been considerably used for cores where their high permeability is helpful in obtaining wide-frequencyresponse. It has, however, one characteristic which makes it necessary to hantle it carefully in the usual vacum-tube circuits - magnetic saturation of the core occurs at very low values of ampere turus. One of the important reasons why these wide range transformers must be used in push-pull circnits is to cancel the effect of any direct current flowing in the plate circuits of tubes from which transformers are operated. A current unhalance of 1 or 4 milliamperes between tubes will not affect the magnelie characteristics, but it is essential that the unhalamee current does not exceed this value.

The principal leature of these new transformers, and that which requires much attention in their design, is the structure of the coil and the core so that leakage reactance and distributed capacitance are reduced to the lowest possible valucs. The question of electrical balance hetween the varions sections of the winding is important. 'This also makes it necessary, in order to obtain the best possible frequency characteristic, that the transformers lee worked in balanced or pushpull circuits.
'Hree standard models are available:
(1) Type 741-G, 50t-600 olun line to push-pull grids.
(2) Tyre $7 \pm 1-\mathrm{d}$, interstage push-pull plates to push-pull grids.
(3) TYie 741-P, push-pull phates to $5000-600$-ohm line.

All motels are housed in cast-aluminum cases. 'lite cases provide shiehling at audiof frequencies and are particularly uselul in reducing inductive feed-back which may eause "singing." The cases are also excellent slields against other high-frequeney disturbances such as the usual lab-

[^10]

Frequeney characterish ic Type 7 H-P Plate-to-Line Transfurmer. Vollage slep-down ratio (i.35:1
oratory noises cansed by circuit breakers, switches, etc., all of which are bothersome, particularly when a wide frequency range is heing used. Cast iron is a somewhat more effective shield at 40 to 180 cycles than ahmimm. Such cases can be provided on special order, thot geaterally it has been found that power-line hum interference is less serious than that producel by other sources.

SPECIFICATIONS

Frequency Range: 50 to 200,000 cyeles per second. Frequency elarateristics for each modet are shown in the acompanying diagrams.
Circuit: AI! models are for use in push-pull circuits. Linc-to-grict, interstage, and plate-to-line models are available. The latler are intendell tor ase with tubes having plate impedances of aboul 10 , orto ohms.
Turns Ratio: See price list.

Core: A shell-type core is used. The core material is "A-Metal."
Terminals: Screw-type terminals with soldering lugs are provicled each.
Mounting: The Iramsformer is mounted in a cast aluminum case. The base has four mounting holes.
Dimensions: $39 / 8 \times 37 / 8 \times$ (height) $37 / 16$ iuches, overatl. Net Weight: 3 ponnels.

Type	Turns Ratio	Use	Code Word	Price
741-G	1 to 6.4	: 2000 -shme liue to pre p. griuls	Whothanast	\$22.50
741-J	1 tol	in terstage	Wiotresvboy	22.50
741-P	6.85 to 1	p. p. plates to 500 -ohm line	whitranctit	22.50

IMPEDANCE-MATCHING TRANSFORMERS

TyIE 606-A
All General Radio transformers may be used as imperlance-matching transiomers. They will transform imperdances in the square of their torns ratio which will be found in the "Turns Ratio" column of the tables. They may be used in either direction, that is, as step-up or step-down impedance-matching transiormers. The frequency runges given in the tables hold for this use of the transformers as well, and the" "Pri. DC" limit still hollss It the "secondary" winding is connected to the source and the frequency range is to be maintained, the number of aiding d-c milliampereturiss for the whole transformer must not exceerl the value it has under rated couditions.

Type 585-R

The Trie j85-R Transformer is a highunality, unity-ratio, circuit isolator for use between transmission lines of from 500 to 700 ohms impedance. The pribary and seconlary windings are thoroughly shielded from each other to minimize electrostatic conpling with the result that on balancel lines the parallel component of interference energy is filtered from the signal. The provision of center-tapped windings allows interchangeable use between balanced and unbalanced systerns and also for their interconnection.

In bridge measurements the use of this transformer makes the bridge balance independeut of electrical or locational changes in the detector circuit, assuring greater accuracy and ease of balance.

Type 585-C

For line-intercomection and wixer problems the Type 585 -C Transformer presents the facilities of an impedance changing device with impedance transformation ratios of 1 to 10 , 1 to 2.5, 1 to $1.56,1$ to $0.64,1$ to 0.25 , and 1 to 0.10 , allowing the transformations shown in the table to be taken in either direction. The desired ratios are obtaned as shown in the diagrams at the foot of the opposite page. The terminals are so arranged that only adjacent ones need be strapped.

LABORATORY TRANSFORMERS

The following two transformers are not to be used for impedance matching in quality commmnication or program circuits. They are valuable in alternating-current measurements not dependent on relative response at widely separated frequencies.

Type 666.A

Where it is clesired to have the impedance ratio easily adjustable over a wide range by means of a phing arrangement at the expense of attenuation of the high and low firequencies, the Type bit6-A Yariahle 'Transformer is recommender. Primarily a laboratory instrument, this transformer is provided witl jacktor binding posts to receive a Type 274 Plug and has multi-tapped windings with the in" cluded turns lrom one end marked plainly on the panel. Any portions of the windings may be used; not only is the imperlance ralio atljustable but approximate ratios may be obtained through different arringements, allowing a choice of a favorable value of primary inductance.

SPECIFICATIONS

Use: The most common uses of the impedancematching transiormers are suggested in the second column of the following table. The associated data are chosen for conditions that will most frequently be met in the suggested uses.
Frequency Range: The table gives the frequency range over which tie vollage ratio is less than 2 db below its value on the fat portion of the characteristic. This range holds for operation "Out of" a source and "Into" a load having the impedances shown in columins three and four. For intermediate values of source and load imperdances the frequency range may be found by direct interpolation.
Turns Ratid: The turns ratio of the whele primary winding to the whole of the secondary winding is given in the "Tacris Ratio" columin of the table. For the adjustable-ratio transformer, Type 666- A , the
turns inchuder betweon the tap and one end are shown in tlie diagram at the foot of the opposite page.
Primary Winding (IIigher Impedance Winding): TLe nominat 60 -cycle inductance of the whole primary is given in the " L " column of table. The maximum current that may be applied to any part of the windings is stated under "I Max."
Mounting: Types 585-C and 585-R are monnterd in standard drawn-steel, wax-filled Model 13 cases. For Type gefb-s. see illustration.
Dimensions: For Types 585-C and 585-R see dimensionct drawing, Horlel B case. Tyיe $666-A$: $31 / 2=41 / 2 \times 5 \mathrm{in}$.
Net Weight: Tyres 585-C and 585-12, 3 poumds: Type 6ifi-A, $31 / 2$ pounds.

		Frepuench liange (${ }^{\text {axim }}$ \& d d $)^{1}$				T'urns: Ratio	Primary			Code Word	Price
Type	Use	out of (olwn.s)	$\begin{gathered} \text { Inth } \\ (\text { ohmas }) \end{gathered}$	$\begin{gathered} \text { From } \\ \text { (eypeics) } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { (cyctes) } \end{gathered}$		Fig.		$\operatorname{H}_{(m a x)}$		
585-C	$\begin{aligned} & \text { Line. Mixel } \\ & \text { Lo to } \\ & \text { Line, Mixer } \end{aligned}$	$\begin{aligned} & 400-600 \\ & 4(90-600 \\ & 100-150 \\ & 100-156 \end{aligned}$	$\begin{aligned} & 1.50-2.50 \\ & 4(6-60 \\ & 1.50-250 \\ & 40-641 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10,800 \\ & 11,000 \\ & 11,0100 \\ & 12,000 \end{aligned}$	$\begin{gathered} 1 . f i \\ (3.2)^{2} \\ (0.8)^{2} \\ \text { to } 1 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	${ }^{6}$	$\begin{gathered} 50 \\ (\mathrm{pri.}) \\ 100 \\ (\mathrm{gce} .) \end{gathered}$	argoe	\$6.00
585-R	$\begin{aligned} & \text { Line, Miser } \\ & \text { to } \\ & \text { Line, Mixer } \end{aligned}$	$\begin{aligned} & 810 \\ & 400 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 90 \\ & 20 \end{aligned}$	$\begin{aligned} & 16,000 \\ & 18,060 \end{aligned}$	$\begin{gathered} 1 \\ \text { to } \\ 1 \end{gathered}$		3	$\begin{gathered} 7 \mathrm{ji} \\ \text { (pri. } \& \\ \text { sec.) } \end{gathered}$	aboma	6.00
666-A	General Prinpose Matcling	(60) 80(0) $)^{2}$	$1-800^{2}$			1 to 10			$\begin{gathered} 6.0 \\ (\mathrm{pri}) \\ 150 \\ (\mathrm{sec}) \end{gathered}$	A BOON	12.50

' Data are for whele of split or tapped windingz.
${ }^{2}$ Using laps on mindings.

TYPE 480 RELAY RACK

This rack is intended for mounting standard 19 -inch panels whose heights are integral multiples of $13 / 4$ inches. Racks of this type have been in use in telephone plants for many years, and they are fast beconing staudard in laboratories for mounting apparalus. Two sizes are available.

Attention is also directed to the Type bifo-A Rack described on opposite page.

SPECIFICATIONS

Construction: Steel frame with welded joints. Both models have provision for lolting them to the Hoor or table, but they are stable enought to stand without fastening tor all ordinary service.
Drilling: Standard driling for 19 -inch relay-rack panels is employed. Holes are tapped and cleaned for a $10-32$ panel-mounting serew.
Accessories: Panel-mounting screws, paniel-protecting washers, and britle rings for called wiring are supplien!.
Dimensions: Type 480-A: Prame, (height) $691 / 8 \times$ (width) $20 \times$ (depth) 3 inches, over-all. Base, (width) $20 \times$ (depth) 15 inches. Punel-mounting space, $6 ;$ inches or 36 "rack uits."
Type 480-B: Frame. (height) $44 \times$ (width) $20 \times$ (depth) $11 / 2$ inches, over $-1 / l$. Base, (width) $20 x$ (depth) 15 inches Pancl-mounting space, $433 / 4$ inches or 2.5 "rack units."
Net Weight: Type $480-\mathrm{A}, 34$ pounds. Type $480-\mathrm{B}$, 20 pounds.

Left: Type 480-B; right: Type 480-A

Type	Paned Space		CodeHord	Price
	Inches	Ract: U		
480-A	63	36	NEED ${ }^{\text {d }}$	\$40.00
480-B	4.38	25	negho	15.00

NOTES ON LAYING OUT RELAY-RACK PANELS

1. Make panel height a muttiple of $13 / 4$ inches less $1 / 32$ inch for clearances.
2. Both top and bottom edges of a properly mounted panel will, neglecting clearances, always fall half way between an pair of holes spaced $1 / 2$ inch alart on the rack.
3. It is seldonm necessary to cut all the possible mountingscrew slots in a parcl, but it can be done if desired.
4. Any panel laid out to fit the rack will also fit if the panel is turned end-for-end or back-for-front.

UNIT PANELS

An assembly of Tyere bet Linit Paucl efuipurnt on a Tres fitiol Rack

General Ratio has recently developed a series of unit panels designed to facilitate the fabrication of experimental and semi-permanent assemblies. All parts are interehangeable. Layont changes cam be made at any time without disfiguring the panel, and a mit is ansily disassembled for conversios: into an entirely different instrument.

The parts required for a complete metal box are a base, two end plates, a dust cover, and a panel (will the accessories accompanying it). All prineipal parts are made of Eraydo a nonmaknetic, non-composive alloy of copper, silver, and zine. which is stronger than materinls commonly used for such parts. One lace is satin finished and eoated with elear lacquer.

The drawings on the next page show to scale the location of all holes. Each panel has several 278 -inch diameter holes symmetrically placed, arownd earh of which are three small holes for mombing the standard bakelite (Nayy type) meter case, or for fastening mounting dises to the pancel. Adjacent to each large panel hole is : $1 / 2$-inch hole for the slow-motion mechanism of at-inch, Trpaz 703 Dial.

At boll top and bettom near cither end are located pairs of $1 / 2$-inch holes on 3 -inch ecmers to fit True ex.e Panel Insulators with Tyep r38-VI) Binding Posts for input and ontpout connections. Other holes are intencled for single-butc-mounting parts suech as rhenstals, telephone jarls, etc, Bustings for redueing the diameter of the holes to ${ }^{5} /{ }^{6}$ ind or $3 / 8$ inch are furristied with the panel. Itumsed lioles are phugeed with Type bifi-P4 shap Buttons.
 thanent-magnet dynamic leoudspeaker, the itput imperance of whicla is 30018 otums.

Four types of monnting dises are available. Tree thif-P'I Blank Mounting Dises are used cither to cover the large pranel holes not in use, or to monut parts other than those manufactured ly General Radio. The center of each is pricked on the reverse to faciliate layout.

The Type 6if1-Pa 3-Hole Mounting Dists have three small liofes drilled on a $3 / 8$-inch radius for monnting General Radio parts having the standard s-hole monnting. Short spacers which provide elearance for the disemonnling screws are furnished. Dises e:tu be: monnted at 30° angles aronad 360°.

The Trpe gal-P3 Adapter Dise has a $21 / 8-$ inch hole and is designed to mount meters such as the Westou type 506 .

Dust covers for the two sizes on 'rod plates are availahle. They lit tightly and slide on from the rear so that they miay be removed when the fancl assemblies are mountrd one above another on a relay rack.

All prices and illusiration on uext hoo petges

TYPE 660-A UNIVERSAL RACK

This is the rack shown in the cut on this page. It consists of two rectangular sted irames which mount parallel to each other. These irames may be serewed to the bench, or they may be fastened to the beneh and wall by the four clamps supplied with each rack.

Type foti-T's lamel Clamps will clamu a panel to the rack in any desired position. Four
of these are supplied with each unit panel, hut none are supplied wit the rack. The rack can he used for parels of any width.

The height of the Type 660-A Rack is $261 / 2$ inches (lifteen $13 / 4$-ituch rack urits).

Type	Ruel Unifs	CodeWord	Priep
$660-\mathrm{A}$	15	minvy	$\$ 6.00$

UNIT PANELS AND ACCESSORIES（Draxirgs $1 /$／ath Actual size）
 $19 \times 12-\mathrm{INCH}$ UNIT PANELS

$19 \times 7 \cdot \operatorname{INCH}$ UNIT PANELS

ACCESSORIES（1／rd Actual Size）

Type 661－P1 Blank Mounting Diss

For hase as blank coucr or ＂drill yout own．＂Cenler prick－pminchuct for easy layout，就． 15 ench．

Type 661－PI 3－Hole Mounting Dise

For s－hole roounting， 120 apart on $1 /$－ineil radius．le possible mo－ sitions \＄0． 20 cuch．

Trae 6．61－P3
Adapter Dise
For al／a－ineh meters （e．g．Westors 506）野年 cach．

Type 861－P11 Cower Plate
Jor usa with Type．177－E Induetor Form and Tyיb 177－K Imuluctor Shield． 40.20 each．

ENDS, BASES, DUST COVERS (Darwing $1 /$ ith Actual Size)

Type 661-K End- and Base-Plate Assembly
For 19 x 12 -inch Panels $\$ 5.00$
Buse plate can be mounted in any one of four positions. Machine screws and spacing pillars supplied. Order phirel (shown dotted) and dast coser separately.

Type 661-L
End- and Base-Plate Assembly
For 19×7-inch Pinels 8.00

Buse plate can be mounted in any one of four positions. Madhine serews and spacing pillars supplied. Order panel (shown dotted) and dust cover separately.

Type 661-R Dust Cover

For 12-inch Panels 82.00

Type 661-S Dust Cover

For 7-inch Panels $\$ 1.50$
Fit elosely. Can be attached and removed when panels are mounted one shove another on a rack. Machine screws lor hack supplied.

ACCESSORIES (Shom Actua sise)

Type 661-P8 3/8-in. Bushing Fits $1 / 2 \mathrm{in}$. holes 4 Kor $\times 0.10$

Typ: 661 -PQ T/6-in Bushing Fits $1 / 2$-in. loles $+1.0 \mathrm{~F} 80.10$

Type 661 -P6 Mounting Spacers
Proyide charance for pats interfering will pitrts interfering worling ferews. 6 lor 物 10

Type 661-PT
Dia] Indicator
For G. H. dial. Supplied frue with cach dial when ree with cach denl when
order specilically $\mathrm{re}-$ order surecilical
ruests iL 80.5

PLUG-IN INDUCTORS FOR UNIT PANELS

The threc basie components shown below, Logether with a T'Ype fibl-PII Cover llate can be assembled in three ways to make up an effective shiedded pligg-in inductor for use in high-lirequency experimental work. The Tyre 177-B Inductor Form can be used alone or, if lesired, a Type 17\%-K Inductor Shield can be attachell to make one integral unit. Then, when a shiciled inductor is reguired for use with unit-panel assemblies, the cover plate is adred, as shown in the photograph below, The shield base is securely locked to the shield top by the three bayonet catches. I Ihe center is a threaled roul which engages a threaled insert. in the Trye g61-Pit dach Base and lraws the cover plate firmly against the panel.

The Trpe 6fil Plo Jack Base can be used behind the panel or monnted horizontally on a shelf using short spacer studs.

An important feature in short-wate work is the excellent noise-free contact provided by the use of spring-type plugs and jacks. The cight sets of condacts are alequate for the most clathorate circuit. Both plugs and jacks, can be removed il fewer contacts are needed. Complete assembly instructions are supplied.
with complete assend ly instructions.
Code Whrd: innuefkemp
Price: $\$ 0.75$

A shieliled inductor-form assembly. made up

Induetur Shield, and al Type fefl-Pll Cover Plate.

The eomplete strichlen inductor mounts in this mamer on a unit panel. The three springs on the Type fi6t-rio Jack Base guide the inductor into place
效

Type 177-B inductor Form
Can lie used alone, witl slield, or with shiehd and cover plate For unit-panel monne ing. See photortriphs. Supplied with cight removable phoss (with lochwaslers sull luys). Winding form: $11 / 4$ inthes (11 anter), 13 itwhes (length). Moulded bakelite.
Conte Wurl: mpugumat
Price: $\$ 0.85$

Type 661-P10 Jack Base

Inelutes eight removable jaiks ant lugs. Ctique locating device makes pluyging in coils extremety easy, spacer bars fit unit panels. Rase may, if desired, be mominted on slielf base (hort spacers not ineluded). Designed for slicelded or unshieldeal Ty'e 17~-13 Inductor Form.

Corle II urd: Cnipandase
Price: $\$ 1.50$

TYPE 519-A DIAL LENS

(See Illustration on Page 152)
This consists of a small lens with an adpinstable holder to mount on a panel aver the dial indicalor, and makes possible the reading of a dial (especially those shown on the next page) to a high degree of precision. When not in use the arm can be swing out of the way and the lens pushed against. the panel to minimize space requirements. When in use the lens is held in prozer position by a detent device.

SPECIFICATIONS

Dimensions: (Height above panel) \& x (width) $11 / 8 \times$ (length or radins) $2^{3} / 8$ inches.

Focall lergth, $11 / 4$ inches.
Mounting: One $3 / 8$-inch hole required for mounting. Net Weight: 2 ounces.

TYPE 520-A DIAL LOCK

Any General Ranlio dial may be firmly clamped in any position by meats of the Trus: 590-A Bial Lock which holds the edge of the dial in a vise-like grip, without exerting appreciable force on the shalt on which the dial is momest. The lock does not alter the dial setting and may be unclamped by loosening the knurled knob when it is desired to clange dial to a new setting.

SPECIFICATJONS

TYPE 677 INDUCTOR FORM

'I'hese coil torms are made of' moulded poreelain in two converient sizes. The eight noteled ribs provide permancot wituling spacing while the series of sinall holes gives adeduate anchorage. Taps and separate wiodings up lo a total of seven terminals are accommolated by a matched plog-in base athl jach, separately avalable.

For complete assumbly two Trus: (a77-PI Coil Form Spacers, with which are included the necessary machine screws, muts, aul lead washers, are requirell. These spacers may also be nsed to support the jack plate.

The V-cut threads yermit use of wire size up to \#10 B. © S., and pextend over three inches.

SPECIFICATIONS

Dimensions: Length, all wils, $45 / 8$ inches. Diumeter, Tyre $677-\mathrm{U}, ~ 21 / 2$ inches; Type 1077-Y, $37 / 8$ inched. Widti, Types $1978-\mathrm{P}$, (i7s-J, $11 / 2$ inches. Height, Type 67\%-P'l, 1 inch.
Net Weight: Type tiz7-U, 10 onnces. Type fifi-P1 (ber puir), 2 ounces. Type \&if7-1P, 4 ounces. Typr (677-J. 4 ounces, TYpe $677-\mathrm{Y}, 15 / 8$ pounds.

PARTS AND ACCESSORIES

GENERAL

TYPES 704 AND 706 PRECISION DIALS

These are high-grade precision dials, with scales individually engraved on an automatic selfindexing engraving machine in fine, radial, and accurately located lines. The dial scale and the slow-motion knoh rotate in the same dircetion.

The accuracy of the engraving and the precision of setting obtainable justify the use of a T'ypes 519-A Dial Lens.

Backlash has been eliminated in the construetion of these long-scale dials by setting the scale permanently and securely on the main shaft which thus has its angular position accurately indicated. The tension of the friction drive is adjustable to suit the load and the preference of the operator, and the position of the friction drive shaft thay be adjusted to compensate for errors in the centering of the main shaft in the center hole by means of an eccentric bushing.

Tyfe 704-D

Type 700-C

These dials are secured to their slafts through the use of two setscrews separated by 190° and are supplied bored to receive a $3 / 8-$ inch shait. For use witha a $1 / 4$-inch shaft, a split collar bushing is provided which securely grips the shaft throughout one inch of its length, averting all possibility of slipping.

Settings of these dials may consistently be duplicated to one-fiftlı of a division, allowing an aceuracy of resetting, for the Type 706-D. of better than 0.05%. Parallax is eliminated through the use of an indicator which always remains flush with the surface of the dial, and at the same time absorbs the slight eccentricities of the main shaft through the flexibility of its mounting arm.

Only one additional hole in the pancl is required for mounting; the drilling template lurnished enables it to be accurately located.

The dial indicator is supplied.

PATENT NOTICF. See Note 17, page v.

FRICIION-DRIVE AND DIRECT-DRIVE DIALS

TYPEs 702-A and 70Q-F

The dials described here have photo-etrined, niekel-silver scales and use the fluted bakelite knob described on page 155.

Three diameters are available either with or without the friction drive. An indicator and drilling template are supplied.
All dials are insulated from the shaft.

See next page for $31 / 4$-inch dials.

TYPES 710-B and 710-G

- $23 / 4-I N C H$ DIAMETER - TYPE 702 FRICTION-DRIVE DIALS*

Type	Skaft	Dial		Frietion-Drive Ratio	Net Weiqhit	Code Word	Price
	Dicmeter	Are	Divisions				
702.A	$1 / 4$ in.	180°	100	1:3.3	4 oz .	DIaCK	\$1.75
702-B	1/4in.	270°	100	1:3.9	4 oz .	dibog	1.75
702-F	3/8in.	180°	100	1:3.3	4 oz .	dieag	1.75
702-G	$8 / 8 \mathrm{in}$.	270°	100	1:3,3	40%.	H6O1	1.75
- $23 / 4-1$ NCH DIAMETER - TYPE 710 DIRECT-DRIVE DIALS							
710-A	$1 / 3 \mathrm{in}$.	180°	100		21/2 oz.	dialy	\$1.00
710-B	$1 / 4 \mathrm{in}$.	270°	100		21/2 \%z.	dibin	1.00
710-G	$8 / 8 \mathrm{in}$.	270°	100		2]/2 Oz .	mget	1.00
- 4-INCH DIAMETER - TYPE 703 FRICTION-DRIVE DIALS*							
703-A	1/4 in.	180°	100	1:5	8 oz .	diant	\$2.00
703-B	1/4in.	270°	200	1:6	8 cz .	mibut	2.00
703-F	$3 / 8 \mathrm{in}$.	180°	100	1:5	8 oz .	marun	2.00
703-G	d/8 in.	270°	200	1:5	8 oz .	DIGCM	2.00
- 4-INCH DIAMETER - TYPE 717 DIRECT-DRIVE DIALS							
717.A	1/4 in.	180°	100		5 oz .	Diakm	\$1.50
717-B	1/4in.	270°	200		5 oz .	dibar	1.50
717-F	$3 / 8 \mathrm{in}$.	180°	100		5 cz .	DIFIT	1.50
717-G	$3 / 8$ in.	270°	200		507.	dioak	1.50

All illustrations 3 ri actual size

Types 717-13 and 717-G +PATENT NOTICE. Bre Note 17 , page v.

Type 705
Type 712

- $31 / 4-[$ NCH DIAMETER - TYPE 705 FRICTION.DRIVE DIALS

Type	Shaft biameter	Dial		Friction-DriveRatio	Net Weigh:	'Coule W'ord	Irice
		Are	Dipiztomes				
705-A	1/4in.	180°	100	1:4	41/2 oz.	diark	\$1.75
705-F	$3 / 8 \mathrm{in}$.	180°	100	1:4	41/207.	mifal	1.75

FATENT Notidee. See Note 17 , patie v.

- $31 / 4-I N C H$ DIAMETER - TYPE 712 DIRECT-DRIVE DIALS

Type	Shaft Diameter	Dial.		Friction-Drive Ratio	Vet Height	Code Word	Irice
		Arc	Divisions				
712-A	1/4 in.	180°	100		$41 / 20 \%$.	DIAPE	\$1.25
712-F	$3 / 8 \mathrm{in}$.	180°	100		$41 / 2 \mathrm{oz}$.	dipar	1.25

Type 318-A

DIAL PLATES

These two dial plates have photo-etched scales with raised nickel-sibver graduations on a flat black background. Fach can be attached to the patel with the same screws which hold the rheostal-potentiometer with which the dial plate is used.

Type 522-A

A 8 -inch diameter plate for use with a $15 / 8$-inuch knoh, either poimer or skirt, and with any rlwostatpotentioneter having standard 3 -bole mounting. Marked with 90 divisions around 998°.

Cate TVord: devis
Price: $\$ 0.35$
Gode Word: Docima
Prine: $\$ 0.35$

TYPE 637 FLUTED KNOBS

The monlded bakelite knobs in this type series are now used on all new Gencral Radio apparatus. They were chosen from among dozens of preliminary designs as the ones best suited to the requirements of measiring instruments. The smoothed fluted hourling
affords a positive, cramp-free grip for the most delicate adjustments.

The white pointers are made of non-conducting material, and they can he pried off when knohs alone are required. Each knob has two set serews to insure permanerce ol selting.

$11 / 8-$ INCH DIAMETER-WITH POINTER

THpe	Shaft Diameter	Net treigh Ounces	Conde Ford	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Pachuge of 10
$637 . \mathrm{A}$	1/4 inch	1/2	nuthlnobant	\$0.30	\$2.10
637-B	$3 / 8$ inch	1/2	NUleL Mohboy	. 35	2.35

Type	15/8-INCH DIAMETER-WITH POINTER				
	Shaft Diameter.	Net Weight Ounces	Code IVord	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Packape of 10
637-G	1/4 inch	1	nurlvorgun	\$0.35	\$2.35
637-H	3/8 inch	1	ntrlnobhat	. 35	2.35

Type	15/8-1NCH DIAMETER-WITH SKIRT				
	Shaft Dinmefer	Net Weigh Ounces	Cole Word	$\begin{aligned} & U_{n i t} \\ & \text { Price } \end{aligned}$	Package of 10
637.J	1/4 inch	2	Nuthabirs	$\$ 0.40$	\$2.75
637-K	3/8 inch	2	NUHLNOBкор	. 45	3.25
(Diameter of skirt, 21/is inches)					

Type	23/8-INCH DIAMETER-W/TH POINTER				
	Shoft Diameter	Net Wetight Owmex	Cone Word	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Parkiage of 10
$637 . \mathrm{P}$	1/4 inch	3	NURLNOBPIG	\$0.50	\$3.75
637-Q	$3 / 8$ inch	3	nutlyobuquo	. 50	3.75

23/5-INCH DIAMETER-WITH SKIRT

Type	Shatt Diameter	$\begin{gathered} \text { Net Weroht } \\ \text { Otheess } \end{gathered}$	Code IWard	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Packuye of 10
637-R	1/4 inch	4	nurlinobram	\$0.50	\$3.75
637-S	\%/8 inch	4	Ntirlnobsdm	. 50	3.75
(Diameter of skirt, 3 incthes)					

TYPE 202 SWFTCH KNOB

This is the bakelite hob that is used on our resistance boses and decale condensers because il enaliles the operator to estimate the value of a setting by his sense of touch. The pointer is of niekel-plated brass. It is not insulated from the sladit.

Type	Shoft Diomeler	$\begin{gathered} \text { Net Wriqh } \\ \text { Ounces } \end{gathered}$	Code Word	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Pachate of 10
202.y	$3 / 8$ inch	1	switcharmy	\$0.45	\$3.00
202-Z	1/4 inch	- 1	Sivitehblerg	. 45	3.00

Ali jushatru!ions $3 / 2$ achual sipe

SWITCHES

This is a quadrupleleaf phosphor-bronze switch which makes wiping contact on both the switch points and the fixed bushing. It is interded for use with Type 138-B or Type 188-C Switch Contacts mounted on a $13 / 8$-inch radius.

Type 339-A and
Type 339-B
This is a rotary, 3 -position switch for all applications where a toggle-switch-nction "anti-capacity" switch would ordinarily be used. The entire throw is 180°, from one position through "off" to the third position, each position being marked by a detent device. The movable switch blades are actuated by a moulded bakelite worm.
Only one mounting hole is required for all panels up to $3 / 8$ inch thick. Buth 4 -pole double-throw and 2-pole double-throw norlels are available. The contact springs can be bent for switching in unusual circuits.
The capacitance between switch elements is low. The switch itself is insulated for all voltages up to 250 volts, and the contacts will safely break 2 amperes.

	Prand Th	Conde Vord	Price		Code		
202-A	1/8 $101 / 4 \mathrm{in}$.	swijchtoan	\$0.75	$339 . \mathrm{A}$	4-Pole, Douhle Throw	pupey	\$2.50
202-B	$1 / 4103 / 8 \mathrm{in}$.	Switelemois	. 75	339.8	2-Pole, Double Throw	putty	2.00

SWITCH CONTACTS AND STOPS

Switch contacts are available made of nickel-plated bronze and are either with plane faces or with cupped-shaped depressions which act as detents definitely to center the switch blade in position. Each switch contact has a
knurled shoulder which, when drawn into the panel by tightening the nut, prevents rotation of the contact head.

The switch stop is made of nickel-plated brass, and is withont a knurled shoulder.

188-B	138-C		138		138-2
	Deseription.	Dimensions			
Type		A	B	C	D
138-B	Plane Switch Contact	$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$	${ }^{7} 10$ drill	3/8' max.
$138 . \mathrm{C}$	Plane Switeh Contact	$5 / 16^{\prime \prime}$	$3 / 16^{\prime \prime}$	\#10 drill	$1 / 2^{\prime \prime}$ max.
138-D	Plane Switch Contact	$3 / 16^{\prime \prime}$	$3 / 16^{\prime \prime}$	\#28 drill	$1 / 2^{\prime \prime}$
138-Q	Switch Stop	5/66 ${ }^{\prime \prime}$	316^{17}	6-32 stud	$3 / 3^{\prime \prime}$ max.

Type	Code Worl	Price		
		Unit	Pacliage of 10	Prokiage of 100
138-B	contactant	\$0.10	\$0.40	\$2.25
138-C	contactreg	. 10	. 50	3.20
138-D	contacticat	. 10	. 40	2.20
138-Q	stanpatedel	. 10	. 40	2.25

BINDING POSTS AND ASSEMBLIES

Particular attention is directed to the three binding posis having jack tops which take plugs of the Trre 274 series. (Type 138-才D, Type 138-V with longer stud, is not illustrated.)

The hinding-post assemblies are convenient means for mounting binding posts on metal pancls. The True 738-A is designed for mounting, by drive fit, in a bakelite panel.

138-A
$138-\mathrm{V}$
138-X
274-K

Type	Description	Dimensions			
		A	R	C	D
138-A	Biading Post (bukelite top)	$3 / 4 "$	$3 /{ }^{\prime \prime}$ min.	10-59	$3 / 8^{\prime \prime}$ max
138-V	Binding Post (small jack top)	$3 / 8{ }^{\prime \prime}$	13/16" min .	10-32	$1 / 2^{\prime \prime}$ max.
138.VD	Binding Post (small jack top, long stud)	$3 / 8^{\prime \prime}$	11/6" min.	10-32	$7 / 8^{\prime \prime}$ max.
138-X	3inding Post (large jack toly)	$1 / 2^{\prime \prime}$	11/18" min.	10-32	$1 / 2^{\prime \prime}$ max.
274-K	Assembly (wilh 138-1 Powts)	$2961{ }^{\prime \prime}$	$1^{\prime \prime}$	6-38	$1 / 4{ }^{\prime \prime}$
274-L	Assembly (with 188-X Posts)	2916"	$1^{\prime \prime}$	6-32	$1 / 4^{\prime \prime}$

Tupe	Code Hinct	Price		Packous of 700
		Unit	Package of 10	
138-A	Stanpanclip	\$0.25	\$1.50	\$13.50
$138 . V$	stanparant	. 25	1.35	12.00
138-VD	Stanparilen	. 25	1.35	12.00
138-X	stanparboy	. 25	1.35	12.00
274-K	stanpalrbag	. 6.5	-	-
274-L	stanpaktag	. 65	-	.

PLUGS AND JACKS

The following section lists smal? parts which the laboratory worker and amatenr will find useful in the construction of his eguipment.

Type 274-P Plug
Basic plug unit-Max. cumport, 8 a.
$A=5 / 10$ inch max.
$B=1 / 8$ inch
$C=6-82$
$D=5 / 8$ inel.

Cofe II ord: stanjahcat
Unif Price
$\$ 0.12$
Pactroge of $10 \quad . \quad .70$
Prichite of 100
5.25

Type 274-J Jack

basic jack until.

$$
\begin{aligned}
& A=7 / 6 \text { inch } \\
& B=38 \text { inch max. } \\
& C=314 \text { ineh-28 }
\end{aligned}
$$

Conde Word: stanpartor
Unit Price . . $\$ 0.10$
Packuge of to
.45
Pachage of 100
2.25

Type 274-X Plug

is illustraterl with tubular rivet top.

$$
\begin{aligned}
& A=0.135 \text { inch, dianı. } \\
& B=3 / 16 \text { inch } \\
& C=1 / 8 \text { inch } \\
& D=1 / 2 \text { inch }
\end{aligned}
$$

Code Wort: stanpartin
Unit I'riee
Prehure of 10
Pachurue ar 100
4.25

Type 274-U Single Plug
Like TyPe 274-K, latit withont thembserew.
$A=7 / 16$ inel $C=1 / 4$ inch- $2 s$ $B=3 / 8$ ineh max. $l=1 / 4$ inch Code Word: stan pargot
Unit Price . $\$ 0.15$
Pockuge of $10 \quad 1.00$ Prekatge of $100 \quad 8.00$

Type 274-D Insulated Plus

Sinilar to T'vpe 欢b-E but with bakelite sleeve.
$A=1 / 2$ iteh $\quad B=15 / 1$ inch 2 Cond Mord: STANPATEEYE
Erit Price . $\$ 0.25$
Parketge of 10
2.25

Type 274-SB

Short-Circuit Plug
Type 274-U Phugs wilh a nickel-plated brass har. Corte Word: strineanio. Price
$\$ 0.65$

All multiple plugs and jacks have the Gieneral Ratio stantard 3/4-ineh spacing between centers.

Type 274-M, -ML Double Plugs

Moulded bakelite with jacks itt lop and setserews for cord tips. $8 / 4$-ineh spacing.
$A=11 / 4$ inch $B=13 / 4$ inch
Type 274-M
Code Word: stanpabibug
$\begin{array}{lr}\text { Unif lrice } & \$ 0.40 \\ \text { Pochage of 10 } & 2.60\end{array}$
Type 274-ML
Luw-loss (yellow) hakelite. Conde: Word: stantahbuy
Unat Price
$\$ 0.45$
Pactrage of to
3.00

Type 674-P Jumbo Plug
Basic jumbo-plug unit Max current. 25 a .

$$
\begin{aligned}
& A=3.4 \text { inch } \\
& l=8 \\
& C=3, \text { inch } \\
& D=18 \text { inch } 32
\end{aligned}
$$

Cale Word: stanparape
Unit Price
$\$ 0.30$
Pachage of 10
1.75

Type 674-J Jumbo Jack
basic jumbo-jack unit,

$$
\begin{aligned}
& A=3 / 4 \text { inch } \\
& B=916 \text { inch max. }
\end{aligned}
$$

$C^{\prime}=1 / 2$ inch -20
Code Word: stanparaye
Unit Pricg $\$ 0.30$
Pachaye of 10 . 1.65

Type 674-D Insulated Jumbo Plug

With insulated shank and solderiug lug- jack in top.
$A=8 / 4$ inch $\quad B=11 / 18$ luch Code Word: stanpakalik
Unit Price
$\$ 0.50$
Pachage of to
4.00

Type 674-C Jumbo Plug
With solder-filled cup in shank for sweating-in $1 / 4$-inch tubing.
$A=1 / 2$ inch $\quad B=3 / 4$ inch Code Word: stantarcox
Unit I'riee
$\$ 0.25$
fackuge of 10
1.50

Type 274-NC Shielded Conductor

A comentric-shielded monductor with phazs. Capacitance: $700 \mu \mu{ }^{t}$ per foret Intpedance: About so chams Conde Ford: atanjouzoo

Price: $\$ 1.50$

Type 274-RJ Four-Gang Jack Base
For mounting thernocouples, oxirle rectifiers, ete. $A=3 \frac{3}{4}$ inches $\quad \mathrm{C}=9 / 4 \mathrm{~m}$ inech $B=11 / 2$ indes
Coute Word: stanpabuter Price: $\$ 1.00$

TYPE 274 PANEL TERMINAL INSULATOR ASSEMBLY

These are bakelite insulators, used in pairs with TYue $\mathbf{1 3 8}$-VD Binding fosts, for mounting on a metal panel. 'They are available in either black or low-loss natural bakelite.

$$
\begin{array}{ll}
A=11 / 2 \text { inches } & C=3 \text { inch diam. } \\
B=3 / 2 \text { inch } & D=1 / 8 \text { inch to } 3 / 16 \\
& \text { inch }
\end{array}
$$

Type	Buldite Material	Code Hord	Price	
			(1)air)	Pocelinge of in Pairx
274-Y	Black	standalmal	\$0.20	\$1.35
274-7.	Yellow	stanpatiod	, 30	2.10

TYPE 119-A RADIO-FREQUENCY CHOKE

The Thre 119-I Radio-Frequency Choke is suitable for use at frequencies as high as 40 megacycless. The winditg is composed ol a large mumber of thin, spiral-wound pies. This method of construction produces only one resonat point, minor resonances being practically eliminated.

SPECIFICATIONS

Inductance: 950 millihemries.
Capacitance: 2 micromicrofarads.
D-C Resistance; 4,50 olims.
Maximum Current: tit) williaumperes.

REACTANCE CHART
 Always use corresponding scales

FREOUENCY
FIG. 1

The arcompanying chart may be used to find:
(1) The reaclance of a given inductance at a given frequetw.
(2) 'The reactance of a given rapacitance at af given frequeser.
(3) The resomant frequency of a griven indintance and mparitance.

In order to facilitate the determination of magnitude of the quantitics involverl to lwo or three signifieatal figures the elart is rlivirled into two parts. Figure 1 is the complete chart to be used for rough
calculations. Figure 2, which is a single decade of Figure 1 enlarged approximatedy 7 times, is to he used where the signifionnt two or three figures are to be determined.

TO FIND REACTANCE

Finter the clarts vertically from the hot tom (frecuency) and along the lines slanting upward to the left. (inductance) or to the right (capacilance). Corresponeling scales (upper or lower) must be used thronghont. l'roject lorisonilally to the left from the intersection and read reactance.

Always obtain approximate value from Figure 1 before using Figure 2

TO FIND RESONANT FREQUENCY

Enter the slanting lines for the given inductance and copacilance. Project downward from their interseation and read resonant frecpuency from the bottom scale. Corresponding scales (upper or lower) must be nisent throuthonit.

Example: The sample point indicaled (tisgure I) ecrresponds to a frequency of ahout 700 ke and an inductance of 0.5 hemry, or a macilance of $0.1 \mu \mu \mathrm{f}$, giving in eit her case a reactance of alsont 2 2000,000 olams. The resonant frequency of a circuil containing these values of inductance and capacitance is, of tourse, 700 kc , approximately.

USE OF FIGURE 2

Figure 2 is used to obyain anditional precision of reating lout dors not place the decimal point which unst lee located from a preliminary entry on ligure I Since the chart necessarily requires two logarithanc decades for inductance and caparitance for every single derade of fregtency and reatance, unless the currect decate for L and C is ehosern, the calculated values of ratartanes and frequency will be in error by a factor of S.36.

Example: (Continued.) The reactance corresponding to 0.5 henry on $0.1 \mu \mu \mathrm{f}$ is $2,230,000$ ohms at 712 kc , theiry resonat frequency.

DECIBEL CONVERSION TABLES

It is convenient in measurements and calculations on communications systems to express the ratio between any two amounts of electric or acoustic power in units on a logarithmic scale. The decibel ($1 / 10$ th of the bel) on the briggsian or base- 10 scale and the neperon the napierian or base-e scale are in almost universal use for this purpose.

Since voltage and current are related to power by impedance, both the decibel and the neper can be used to express voltage and current ratios, if care is taken
to account for the impedances associated with them. In a similar manner the corresponding acoustical quantities can be compared.
Table I and Table II on the following pages have been prepared to facilitate making conversions in either direction between the number of decibels and the corresponding power, voltage, and current ratios. Both tables can also be used for nepers and the mile of standard cable by applying the conversion factors from the talle on the opposite page.

Decibel - The number of decibels $N_{d b}$ corresponding to the ratio between two amounts of power P_{1} and P_{2} is

$$
\begin{equation*}
N_{d b}=10 \log _{10} \frac{P_{1}}{P_{2}} \tag{1}
\end{equation*}
$$

When two voltages E_{1} and E_{2} or two currents I_{1} and I_{2} operate in the same or equal impedances,

$$
\begin{align*}
& N_{d b}=20 \log _{10} \frac{E_{1}}{E_{2}} \tag{2}\\
& N_{d b}=20 \log _{10} \frac{I_{I}}{I_{2}} \tag{3}
\end{align*}
$$

If E_{1} and E_{2} or I_{1} and I_{2} operate in unequal impedances,

$$
\begin{align*}
N_{d b}= & 20 \log _{10} \frac{E_{1}}{E_{2}}+10 \log _{10} \frac{Z_{2}}{Z_{1}} \\
& +10 \log _{10} \frac{k_{2}}{k_{1}} \tag{4}\\
\text { and } N_{d b}= & 20 \log _{10} \frac{I_{1}}{I_{2}}+10 \log _{10} \frac{Z_{1}}{Z_{2}} \\
& +10 \log _{10} \frac{k_{1}}{k_{2}}
\end{align*}
$$

where Z_{1} and Z_{2} are the absolute magnitudes of the corresponding impedances and k_{1} and k_{2} are the values of power factor for the impedances. Note that Table I and Table II can be used to evaluate the impedance and power factor terms, since both are similar to the expression for power ratio, equation (1).

Neper - The number of nepers $N_{\text {nep }}$ corresponding to a power ratio $\frac{P_{1}}{P_{2}}$ is

$$
\begin{equation*}
N_{n e p}=\frac{1}{2} \log _{\varepsilon} \frac{P_{1}}{P_{2}} \tag{6}
\end{equation*}
$$

For voltage ratios $\frac{E_{1}}{E_{2}}$ or current ratios $\frac{I_{1}}{I_{2}}$ working in the same or equal impedances,

$$
\begin{equation*}
N_{\text {nep }}=\log _{e} \frac{E_{1}}{E_{2}} \tag{7}
\end{equation*}
$$

and $\quad N_{n e p}=\log _{e} \frac{I_{1}}{I_{2}}$
When E_{1} and E_{2} or I_{1} and I_{2} operate in unequal impedances,
$N_{\text {rep }}=\log _{e} \frac{E_{1}}{E_{2}}+\frac{1}{2} \log _{e} \frac{Z_{2}}{Z_{1}}+\frac{1}{2} \log _{e} \frac{k_{2}}{k_{1}}$
and
$N_{\text {nep }}=\log _{e} \frac{I_{1}}{I_{2}}+\frac{1}{2} \log _{s} \frac{Z_{1}}{Z_{2}}+\frac{1}{2} \log _{e} \frac{k_{1}}{k_{2}}$
where Z_{1} and Z_{2} and l_{1} and k_{2} are as in equations (4) and (5).

RELATIONS BETWEEN DECIBELS, NEPERS, AND MILES OF STANDARD CABLE

Multiply	By	To Find
decibels.....	.1151	nepers
decibels.......	1.056	miles of standard cable
miles of standard cable	.947	deribels
miles of standard cable	.109	nepers
nepers.......	8.686	decibels
nepers......	9.175	miles of standard cable

IO FIND VALUES OUTSIDE THE RANGE OF CONVERSION TABLES

Values outside the range of cither 'Table I or Table II on the following pages can

table !: decibels to voltage and POWER RATIOS

Number of decibels positive (+) : Subtract +20 decibels successively from the given number of decibels until the remainder falls within range of Table I. To find the voltage ratio, multiply the corresponding value from the right-hand voltage-ratio column by 10 for each time you subtracted 20 db . To find the power ratio, multiply the corresponding value from the right-hand power-ratio column by 100 for each time you subtracted 20 db .

```
Example-Given: 49.2 db
    \(49.2 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=9.2 \mathrm{db}\)
    Voltage ratio: \(9.2 \mathrm{db} \rightarrow\)
        \(2.884 \times 10 \times 10=288.4\)
    Power ratio: \(9.2 \mathrm{db} \rightarrow\)
        \(8.318 \times 100 \times 100=83180\)
```

Number of decibels negative (-):
Add + 20 decibels successively to the given number of decibels until the sum falls within the range of Table I. For the voltage ratio, divide the value from the left-hand voltage-ratio column by 10 for each time you added 20 db . For the power ratio, divide the value from the left-hand power-ratio column by 100 for each time you added 20 db .
Example-Given: - 49.2 db

$$
-49.2 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=-9.2 \mathrm{db}
$$

Voltage ratio: $-9.2 \mathrm{db} \rightarrow$ $.3467 \times 1 / 10 \times 1 / 10=.003467$
Power ratio: $-9.2 \mathrm{db} \rightarrow$ $.1202 \times 1 / 100 \times 1 / 100=.00001202$
be readily found with the help of the following simple rules.

IABLE II: VOLIAGE RATIOS TO DECIBELS

For ratios smaller than those in table-Multiply the given ratio by 10 successively until the product can be found in the table. From the number of decibels thus found, subtract +20 decibels for each time you multiplied by 10 .

Example-Given: Voltage ratio $=.0131$
$.0131 \times 10=.131 \times 10=1.31$
From Table II, $1.31 \rightarrow$
$2.345 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=-37.655 \mathrm{db}$

For ratios greater than those in table-Divide the given ratio by 10 successively until the remainder can be found in the table. To the number of decibels thus found, add +20 db for each time you divided by 10 .

Example-Given: Voltage ratio $=712$
$712 \times 1 / 10=71.2 \times 1 / 10=7.12$
From Table II, 7.12 \rightarrow
$17.050 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=57.050 \mathrm{db}$

TABLE \｜

GIVEN：Decibels
TO FIND：Power and $\left\{\begin{array}{l}\text { Voltage } \\ \text { Current }\end{array}\right\}$ Ratios
TO ACCOUNT FOR THE SIGN OF THE DECIBEL

For positive $(+)$ values of the decibel－Both voitage and power ratios are greater than unity． Use the two right－hand columas．

For negative（－）values of the decibel－Both voltage and power ratios are less than unity．Use the two left－hand columns．

x_{1}							$x x^{x} x+\infty$ ごこご	$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$			
				Giciócor －20ct 				$\begin{aligned} & x \propto x x \\ & x=0=0 \end{aligned}$		$\begin{aligned} & =7 \\ & 9.9 \\ & \text { sing } \end{aligned}$	
かわ心が心 	山山必系 incoici－：	$\omega \cos \cos$ －onvior	范 is ionios	retorex －co 2 ze	 	$=x-200$	in wis:	－xam	－ickiol	$\stackrel{8}{6}$	4
								象		式	
	Noronion －ancin名㣻ご心	Toterox A以ごった。								ごごさ	

	Power Ratio	Voitage Rotio
$+9.1 \mathrm{db}$	8．128	2.851
－9．1 db	0.1230	0.38508

Voltage Ratio	Power Ratio	$d b$	Vollafe Ratio
.5623	.3162	5.0	1.778

TABLE I (continued)

Volage Ratio	Power Ratio	db	Voltape Ratio	Power Ratio	Yoltafe Ratio	Power Ratio	di	Voltape Ratio	Power Ratio
. 3162	.1000	10.0	3.162	10.000	. 1585	. 02512	16.0	6.310	39.81
.3196	. 09772	10.1	3.199	10.23	. 1.567	. 0×4.55	16.1	6.383	40.74
. 3080	. 09550	10.2	3.236	10.47	. 1549	. 023999	16.2	6.457	41.69
+3055	. 09888	10.3	3.273	10.72	. 1531	.02344	16.3	6.531	42.66
+8020	. 09120	10.4	3.311	10.96	.1514	. 02291	16.4	6.607	43.65
. 2985	. 08913	10.5	3.350	11.22	.1496	.02239	16.5	6.689	44.67
. 2951	. 08710	10.6	3.388	11.48	. 1479	. 02188	16.6	6.761	45.71
. 2917	. 08511	10.7	3.428	11.75	. 1482	. 02138	16.7	6.839	46.77
.2884	.08318	10.8	3.46%	12.02	.1425	.09084	16.8	6.918	47.85
. 2851	.08128	10.9	3.508	12.30	.142!)	.02042	16.9	6.998	48.98
. 2818	. 07943	11.0	3.548	12.59	.1413	.01095	17.0	7.079	50.12
. 2788	. 07762	11.1	3.589	12.88	. 1396	. 01950	17.1	7.161	51.29
. 2754	. 07588	11.2	3.681	13.18	. 1380	. 01905	17.8	7.244	$5 \times .48$
. 2723	. 07413	11.8	3.673	13.49	. 1365	. 01862	17.3	7.328	53.70
. 2692	.07244	11.4	3.715	13.80	. 1349	.01820	17.4	7.413	54.95
. 2661	. 07079	11.5	3.758	14.13	. 1334	. 01778	17.5	7.499	56.23
.2630	. 06918	11.6	3.802	14,45	. 1318	. 01738	17.6	7.586	57.54
. 26601	.06761	11.7	3.846	14.79	. 1303	. 01698	17.7	7.674	58.88
.2.570	. 06668	11.8	3.890	15.14	. 1288	(1)690	17.8	7.762	60.26
.2541	. 06457	11.9	3.936	15.49	.1974	.01622	17.9	7.852	61.86
. 2512	. 06310	12.0	3.981	15.85	.1259	. 01585	18.0	7.943	63.10
. 4483	. 06166	12.1	4.027	16.29	. 1245	. 01549	18.1	8.085	64.57
. 24.55	.06026	12.2	4.074	16.60	. 1230	. 11514	18.8	8.128	66.07
. 24.27	. 05888	12.3	4.191	16.98	. 1216	. 01479	18.3	8.2 2゙	67.61
. 2399	. 05754	12.4	4.169	17.38	.1202	. 01415	18.4	8.318	69.18
. 2371	. 05623	12.5	4.217	17.78	. 1189	.01413	18.5	8.414	70.79
. 2344	. 0.5495	12.6	4.266	18.20	.1175	. 01380	18.6	8.511	78.44
. 2317	. 05870	12.7	4.315	18.68	.1161	. 01346	18.7	8.610	74.18
. 2291	.05248	12.8	4.365	14.05	.1148	. 01318	18.4	8.710	75.86
.2265	. 05199	12.5	4.416	19.50	.1135	. 01288	18.9	8.811	77.62
. 2239	. 05012	13.0	4.467	19.95	.1122	. 01259	19.0	8.913	79.43
. 2218	04898	13.1	4.519	20.42	. 1109	. 01230	19.1	9.016	81.28
. 2188	. 04780	13.8	4.571	20.89	. 1096	.01202	19.2	9.120	83.18
. 2163	. 04677	13.3	4.62 .4	21.88	. 1084	.01175	19.3	9.226	85.11
. 2138	. 04.571	13.4	4.637	21.88	. 1072	. 01148	13.4	1.383	87.10
. 2113	. 04467	13.5	4.732	22.39	. 1059	. 01122	19.5	9.441	89.13
. 2089	. 0.13665	13.6	4.786	22.91	. 1047	. 01096	19.6	9.550	91.20
. 2065	. 04866	13.7	4.842	23.44	1035	.01078	19.7	9.661	93.33
. 2042	.04169	133.8	4.898	23.99	1083	.010.67	19.8	9.772	95.50
. 2018	.04074	13.9	4.955	84.5.5	.1012	.01023	19.9	9.886	97.72
. 1995	. 03981	14.0	5.012	25.12	. 1000	. 01000	20.0	10.0001	100.00
. 1978	.03890	14.1	5.070	25.70					
. 1950	. 03802	14.9	5.129	26.30	$-d b+$				
. 1928	. 03715	14.3	\%. 188	46.92					
. 1905	. 03631	14.4	5.248	27.54					
. 1884	. 03548	14.5	5.309	28.18				Vottaye Ralio	
. 1862	. 034417	14.6	5.370	28.84	Ratio	Ratio	db		Ratio
. 1841	. 033888	14.7	5,433	29.51					
. 1890	. 03311	14.8	5.495	30.20	$3.16 .2 \times 10^{-3}$	10^{-1}	10	3.162	10
. 1799	.03236	14.9	5.550	30.90	10^{-1}	10^{-2}	20	10	10^{2}
. 1778	. 03162	15.0	5.623		3.162×10^{-2}	10^{-9}	30	3.162×10	10^{3}
. 1758	. 038090	15.0	5.628 5.689	31.62 82.86	10^{-2}	10^{-4}	40	10^{2}	10^{4}
. 1738	. 103020	15.2	5.754	33.11	3.162×10^{-3}	10^{-5}			
. 1718	. 02951	15.3	5.821	38.88			50	3.162×10^{2}	10^{5}
. 1698	. 02884	15.4	5.888	34.67	. 10^{-3}	10^{-6}	60	10^{3}	30^{6}
					3.162×10^{-4}	10^{-7}	70	3.162×10^{3}	3107
. 1679	. 02818	15.5	5.957	3.5 .48	10-4	10^{-8}	80	10^{4}	$4{ }^{4} 8$
.1660 .1641	.02754 .02692	15.6	6.086 6.095	36.31 37.15	3.162×10^{-5}	10^{-9}	90	4.168×10^{4}	4109
. 16418	.026930	15.7 15.8	6.095 6.166	$\begin{aligned} & 37.15 \\ & 38.02 \end{aligned}$	10^{-5}		100		10^{10}
.1603	. 022570	1.5 .9	6.287	38.90		10^{-10}		10^{5}	

To find decibel values outside the range of this table, see page 16.3

TABLE II
 GIVEN: $\left\{\begin{array}{l}\text { Voltage } \\ \text { Current }\end{array}\right\}$ Ratio TO FIND: Decibels

POWER RATIOS

To find the number of decibels corresponding to a given power ratio-Assume the given power ratio to be a voltage ratio and find the corresponding number of decibels from the table. The desired result is exactly
one-half of the number of decibels thus found.
Example-Given: a power ratio of 3.41 . Find: 3.41 in the table:
$3.41 \rightarrow 10.055 \mathrm{db} \times 1 / 2=5.328 \mathrm{db}$

Voltage Raio	. 00	. 01	. 02	. 03	. 04	. 05	.00	.07	. 08	. 09
1.0	. 000	. 086	.172	. 257	. 341	.424	. 506	. 588	. 668	. 749
1.1	. 828	.906	. 984	1.062	1.138	1.214	1.289	1.364	1.488	1.511
1.2	1.584	1.656	1.727	1.798	1.868	1.938	2.007	2.076	2.144	2.212
1.3	2.279	2.345	2.411	2,477	2,542	2.607	2.671	2.784	2.798	2.860
1.4	4.923	2.984	9.046	3.107	3.167	3.827	3.887	8.346	3.405	3.464
1.5	3.522	\$.580	3.687	5.694	3.750	3.807	3.869	8.918	3.973	4.088
1.6	4.082	+. 137	4.190	4.244	4.297	4.850	4.402	4.454	4.506	4.558
1.7	4.609	4, 660	4.711	4.761	4,811	4.861	4.910	4.959	5.008	5.057
1.8	5.105	5.154	5.901	5.849	5.896	5.343	5.390	5.497	5.483	5.599
1.9	5.575	5.621	5.606	5.711	5.756	5.801	5.845	5.889	5.938	5.977
2.0	6.021	6.064	6.107	6.150	6.193	6.235	6.277	6.319	6.361	6.403
2.1	6.444	6.486	6.527	6.568	6.608	6.649	6.689	6.789	6.769	6. 809
2.2	6.848	6.888	6.927	6.960	7,008	7.044	7.082	7.121	7.159	7.197
2.3	7.835	7.272	7.310	7.347	7.384	7.421	7.458	7.495	7.532	7.568
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.854	7.889	7.924
2.5	7.959	7.913	8.028	8.062	8.097	8.181	8.165	8.199	8.232	8.266
2.6	8.299	8.333	8.366	8.890	8.438	8.465	8.498	8.530	8.563	8.595
8.7	8.697	8.659	8.691	8.723	8.755	8.787	8.818	8.850	8.881	8.912
2.8	8.943	8.974	9.005	9.030	9.066	9.097	9.127	0.158	9.188	9.218
8.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.484	9.513
3.0	9.542	9.571	9.600	9.629	9.657	9.686	9.714	9.743	9.771	9.799
3.1	9.827	9.855	9.883	9.911	9.939	9.966	9.994	10.021	10.049	10.076
3.2	10.108	10.130	10.157	10.184	10.211	10.238	10.264	10.291	10.817	10.344
3.3	10.370	10.897	10.423	10.446	10.475	10.501	10.527	10.553	10.578	10.604
3.4	10.630	10.655	10.681	10.706	10.731	10.756	10.782	10.807	10.832	10.857
3.5	10.881	10.906	10.981	10.955	10.980	11.005	11.089	11.053	11.078	11.102
3.6	11.126	11.150	11.174	11.198	11.228	11.246	11.270	11.993	11.817	11.341
3.7	11.364	11.387	11.411	11.434	11.457	11.481	11.504	11.527	11.550	11.573
8.8	11.596	11.618	11.641	11.664	11.687	11.709	11.738	11.754	11.777	11.799
3.9	11.821	11.844	11.866	11.888	11.910	11.982	11.954	11.976	11.998	12.010
4.0	12.041	12.063	12.085	12.106	12.128	12.149	12.171	12.192	12.213	12.234
4.1	12.256	12.977	12.298	12.319	12.340	$12.36 T$	12.382	12.403	12.424	12.444
4.2	12.465	12.486	12.509	12.527	12.547	12.568	12.588	12.609	12.629	12.649
4.3	12.669	12.690	12.710	12.730	12.750	12.770	12.790	12.810	12.829	12.849
4.4	12.869	12.889	12.908	12.928	12.948	12.967	12.987	13.006	13.026	13.045
4.5	13.064	13.084	13.103	13.122	18.141	13.160	13.179	13.198	13.217	13.236
4.6	18.255	13.274	13.893	13.312	13.390	18.349	13.368	18.386	18.405	13.483
4.7	13.442	13.460	18.479	13.497	13.516	13.534	13.552	13.570	13.589	13.607
4.8	13.625	13.643	13.661	13.679	18.697	13.715	13.733	13.751	13.768	18.780
4.9	13.804	13.828	13.889	13.857	19.875	13.892	13.910	18.927	13.945	13.962
5.0	13.979	13.997	14.014	14.031	14.049	14.066	14.083	14.100	14.117	14.134
5.1	14.151	14.168	14.185	14.902	14.219	14.236	14.253	14.970	14.987	14.303
5.2	14.320	14.887	14.353	14.370	14.387	14.403	14.420	14.436	14.453	14.469
5.8	14.486	14.502	14.518	14.535	14.551	14.567	14.583	14.59!	14.616	14.632
5.4	14.648	14.664	14.680	14.696	14.719	14.788	14.744	14.760	14.776	14.791
5.5	14.807	14.823	14.839	14.855	14.870	14.886	14.902	14.917	14.933	14.948
5.6	14.964	14,979	14.995	15.010	15.026	15.041	15.056	15.072	15.087	15.102
5.7	15.117	15.193	15.148	15.163	15.178	15.193	15.908	15.224	15.239	15.254
5.8	15.269	15.284	15.298	15.818	15.328	15.343	15.358	15.373	15.388	15.408
5.9	15.417	15.432	15.446	15.461	15.476	15.490	15.505	15.519	15.534	15.549

TABLE II (continued)

Voltrope Ratio	00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	08	. 09
6.0	15.563	15.577	15.542	15.606	15.621	15.635	15.649	15.664	15.678	15.692
6.1	15.707	15.791	15.735	15.749	15.763	15.778	15.792	15.806	15.880	15.83.
6.2	15.8 .48	15.862	15.876	- 3.849	15.904	15.918	15.931	15.945	15.959	15.973
6.3	15,987	16.001	16.014	-6.028	16.042	16.055	16.069	16.083	16.090	18.110
6.4	16.124	16.137	16.151	16.164	16.178	16.191	16.205	16,218	16.238	16.245
6.5	16.258	16.978	16.285	16.998	16.318	16.325	16.338	16.351	16.365	16.378
6.6	16.391	16.404	16.417	16.430	16.443	16.456	16.469	16.483	16.496	16.509
6.7	16.521	16.534	16.547	16.560	16.578	16.586	16.599	19.614	16.625	18.637
6.8	16.650	16.668	16.076	16.688	16,701	16.714	16.726	16.739	16.758	16.764
6.9	16.777	16,790	16.802	16.815	16.887	16.840	16.852	16.865	16.877	16.890
7.0	16.902	16.914	16.927	16.939	16.951	16.964	16.976	16.988	17.001	17.013
7.1	17.025	17.037	17.050	17.062	17.074	17.086	17.098	17.110	17.192	17.135
7.2	17.1.47	17.159	17.171	17.153	17195	17.207	17.819	17.231	17.843	17.255
7.3	17.265	17.278	17.290	17.302	17.314	17.326	17.338	17.349	17.361	17.373
7.4	17.385	17.396	17.408	17.420	17.431	17.443	17.455	17.486	17.478	17.490
7.	17.501	17.51 .3	17.584	17.586	17.947	17.559	17.570	17.582	17.593	17.605
7.6	17.616	17.028	17.639	17.650	17.648	17.673	17.685	17.696	17.707	17.718
7.7	17.730	17.7.11	17.75z	17.764	17.775	17.786	17.797	17.808	17.820	17.831
7.8	17.842	17.853	17.8184	17.875	17.886	17.897	17.008	17.919	17.931	17.942
7.9	17.953	17.964	17.975	17.985	17.996	18.007	18.018	18.04 ?	18.040	18.051
8.0	18.062	18.073	18.083	18.094	18.105	18.116	18.127	18.137	18.148	18.159
8.1	18.170	18.180	18.191	18.809	18.812	18.823	18.234	18.844	18.455	18.866
8.2	18.276	18.287	18.897	18.308	18.319	18.329	18.340	18.350	18.361	18.371
8.3	18.388	18.392	18.402	18.413	18.423	18.484	18.444	18.455	18.465	18.475
8.4	18.486	18.496	18.506	18.517	18.547	18.537	18.547	18.558	18.568	18.578
8.5	18.588	18.599	18.609	18.619	18.6 只9	18.839	18.649	18.660	18.670	18.880
8.6	18.690	18.700	18.710	18.780	18.780	18.740	18.750	18.760	18.770	18.780
8.7	18.790	18.890	18.810	18.820	18.830	18.840	18.850	18.860	18.870	18.880
8.8	18.890	18.900	18.9099	18.919	18.929	18.989	18.949	18.958	18,968	18.978
8.9	18.988	18.998	19.007	19.017	19.027	19.036	19.046	19.056	19.066	18.075
9.0	19.085	19.094	19.104	19.114	19.123	19.133	19.143	19.152	19.162	19.171
9.1	19.181	19.190	19.200	19.209	19.819	19.228	19.838	19.247	19,257	19.266
9.9	19.976	10.285	19.845	19.304	19.313	19.343	19.332	19.342	19.351	19.860
9.3	19.870	19.379	19.388	19.598	19.407	19.416	19,446	19.485	19.444	19.453
9.4	19.463	19.472	19.481	19.490	19.499	19.509	19.518	19.587	19.533 j	19,545
9.5	19.554	19.564	19.578	19.582	19.591	19.800	19.609	19.618	19.697	19.636
9.6	19.645	19.654	19.664	19.673	19.688	19.691	19.700	19.709	19.718	19.726
9.7	19.735	19.744	19.753	19.762	19.771	19.780	19.789	19.798	19.807	19.816
9.8	19.825	19.883	19.842	19.851	19.860	18.869	19.878	19.886	19.895	19.904
9.9	19.913	19.921	19.930	19.939	19.948	19.956	19.965	19.974	19.983	19.991

Volaye Ratio	0	1	¢	3	4	*	6	7	8	9
10	20.000	20.828	21.584	22.279	22.923	23.522	24.082	24.609	25.105	25.575
20	20.021	26.444	20.848	27.835	27.604	27.959	28.299	28.627	28.943	29.248
30	29.542	29.827	30.103	30.370	30.630	30,881	31.186	81.364	31.596	31,821
40	32.041	39.256	32.465	34.669	32.869	33.064	33.255	33.442	33.625	33,804
50	33.979	34.151	34.380	34.480	34.648	34.807	34.964	35.117	35.269	S5.417
60	35.563	35.707	35.848	35.987	36.124	36.298	30.391	36.521	36.650	36.777
70	36.902	37.025	37.147	37.466	37.385	37.501	37.616	37.730	37.849	37.983
80	38.062	38.170	38.276	38.382	38.486	38.588	38.690	38.790	38.890	38.988
90	39.085	30.181	39.876	39.370	39.463	30.554	39.645	39.735	39.825	39.913
100	40.000	-	-	-	-	-	-	-	-	-

To find ratios outside the range of this table, see page 163

INDEX BY TYPE NUMBER

Type	Item	Pape	Type	Item	Page
70	Variac 'Iransformer	10	434-B	Audio Frequency Meter	54
80	Variac Transtormer	10	471.-1	Rhcostat-Potentiometer	129
100	Variac	8	475- A	Frequency Monitor	7
1116	Standard Inductance	41	$176-1$	(lu artz Bar	. 1
107	Variable Inductor	42	480	Relay Rack	6
119.-	Radio-Frequency Choke	159	488	Output Metcr	122
138	Bindiug Po	157	484-A	Modulated Oscillator	69
138	Switel Contacts and Stops	156	484-P	Inductors	70
154	Voltage Divider	131	487-A	Megolim Meter	119
177	Inductor Assembly	150	492-A	Oxide Rectifier	34
200	Variac	8	493	Vacumm 'Ibermesouple	6
202	Switch	156	500	Resistor	2
202	Switeh Krob	15.	505	Condenser	- 37
214-A	Rheastat-Potentiometer	128	308-A	Oscillator	. 67
219	Decarle Condenser	39	509	Standard Condenser	36
${ }^{9} 46$	Variable Air Condenser	32	510	Decade-Resistance Unit	14
24	Variable Air Con	35	516-C	Radio-Frequency Bridge	80
249	Attenuation 1	20	519-A	Dial Lens	51
97. 4	Plugs and Jacks	158	520-A	Dial Iock	1
974-R.J	Mounting Base	159	522-A	Dial Plate	54
274	Panel Terminal lusutators	159	525	Resistor	23
9\%4-NC	Shielded Conductor	159	326	Mounted Rheostat-Pote	neter 27
293-A	Universal Bridge	80	529-13	Attenuation Box	20
293-P	Aecessories	87	530	Band-P'ass Fitter	13
301-A	Rhenstat-Potentiometer	131	533-A	Rheostat-Potentioneter	130
31/- ${ }^{\text {a }}$	Rheostat-Potentiometer	129	539	Variable Air Condenser	3
318-A	Dial Plate	154	589-1 ${ }^{\text {² }}$	Incremental-Pitch Conden	15
329-1	Attennation Box	20	541	Andio-F'requency	
338-1	Rheoslat-Polentiometer	130		Translormer	138-145
334	Variable Air Conilenser	138	544-1	Megohm Meter	- 84
33.5. 2	Variable Air Condenser	133	$544-\mathrm{P} 1$	Power-Supply Unit	- 8.5
339	Switch	156	546-A	Microvolter	
358	Wavemeter	60	548-B	Edgerton Stroboscope	
368	Variable Air Coudenser	134	549-B	Synchronous-Motor Conl	tor
371	Rheostat-Potentiometer	- 128	.549-P2	Hand Contactor	
376-L	Quartz Plate	50	6. 22	Volume Control	25
377-13	Low-Frequency Oscillator	66	2(31-C	Vacuum-Tube Bridge	88
380	Decade-Condenser Unit	40	568	Variable Air Condenser	132
410-1	Rheostat-Potentiometer	131	572-B	Microphone Hummer	137
418	Dummy Anterna	99	574	Wavemeter	58
419-A	Rectifier-Type Wavemeter	59	578	Shielded Transformer	91

INDEX BY TYPE NUMBER (continued)

Type	Item Page	Type	Item Page
583-A	Output Power Meter . . . 121	674	Plugs and Jacks 158
585	Audio-Frequency	675-H	Piezo-Electric Oscillator . . 48
	Transformer138-145	675-L	Piezo-Electric Oscillator . . 46
586	Power-Level Indicator . . . 120	676-A	Quartz Bar and Mounting . 51
588-AM	Direct-Current Meter . . . 135	677	Inductor Form 151
602	Decade-Resistance Box . . . 12	678	Plug and Jack Base . . . 151
604-B	Test-Signal Generator . . . 98	681-A	Frequency Deviation Meter . 47
605-A	Standard-Signal Generator . . 96	682-A	Frequency Deviation Meter . 47
610-A	Ratio-Arm Box 92	687-B	Electron Oscillograph and Bedell
611	Syncro-Clock 56		Sweep Circuit 102
612-B	Coupling Panel 45	687-P1	Cathode-Ray Tube . . . 103
613-B	Beat-Frequency Oscillator . . 64	687-P2	Cathode-Ray Tube . . . 103
614-A	Selective Amplifier 45	692-A	Multivibrator 46
615-A	Heterodyne Frequency Meter . 48	702	Friction-Drive Dial 153
616-B	Heterodyne Frequency Meter . 45	703	Friction-Drive Dial 153
617-B	Interpolation Oscillator	704	Precision Dial 152
619-C	Heterodyne Detector . . . 45	705	Friction-Drive Dial 154
620-A	Heterodyne Frequency Meter	706	Precision Dial 152
	-	710	Direct-Drive Dial 153
621	Edgerton Power Stroboscope . 2	712	Direct-Drive Dial 154
625-A	Bridge 90	713-A	Beat-Frequency Oscillator . . 62
631-A	Strobotac 3	714-A	Amplifier 73
636-A	Wave Analyzer 107	716-A	Capacitance Bridge . . . 78
637	Fluted Knobs 155	717	Direct-Drive Dial 153
642-D	Volume Control 26	722	Precision Condenser 30
646-A	Logarithmic Resistor . . . 19	724 A	Precision Wavemeter . . . 57
650-A	Impedance Bridge . . . 76	725-A	Color Comparator 5
$651-\mathrm{A}-\mathrm{E}$	Camera Assembly 105	726-A	Vacuum-Tube Voltmeter . . 116
$651-\mathrm{A}-$	Camera Assembly 106	730-A	Transmission Monitoring As-
653	Volume Control 24		sembly 109
654-A	Decade Voltage Divider . . 21	731-A	Modulation Monitor . . . 110
660-A	Universal Rack 147	732-A	Distortion and Noise Meter . 111
661	Unit Panels and Accessories . 147	733-A	Oscillator 112
666-A	Variable Transformer . . . 144	741	Transformer 142
667-A	Inductance Bridge . . . 83	747-A	Temperature-Control Box . . 52
668	Compensated Decade-Resistance	759-A	Sound Level Meter 6
	Unit 17	813-A	Audio Oscillator 68
669	Compensated Slide-Wire Resistor 18	814-A	Amplifier 71
670	Compensated Decade Resistor . 16	815-A	Precision Fork 53
672-A	Power Supply 123	830	Filter 114
673-A	Power Supply 124	834-A	Electronic Frequency Meter . 55

INDEX BY TITLE

INDEX BY TITLE (continued)

	Page .121	Resistor, calibrated	Page $12-27$
oxide-rectifier	- 122	compensated decad	12-27
sound level	- 6	compensated slide-wire	18
thermocouple	135	decade	. 12
Microphone hummer	137	fixed	22, 23
mixing control	- 24	heavy-duty	- 23
transformer	138	logarithmic	19
Microvolter	117	standard	22
Modulated oscillator	69	Rheostat-potentiometer	.127-131
Modulation meter	110		
Monitor, frequency	47	Selective amplifier .	45
modulation	110	Shielded conductor	159
Mounted rheostat-potentiometer	27	transformer	
Mounting base	159	Signal generator	96, 98
Multivibrator		Slide-wire resistor	. 87
Mutual inductance standard	42	compensated	18
Network, attenuation	20	Sound level meter .	6
Noise meter . .	6	Standard condenser -frequency assembly	$\begin{array}{r}\text { - } \quad 36 \\ . \quad 44 \\ \hline\end{array}$
Oscillator, audio	62-68, 137	inductance	41
beat-frequency	. 62, 64	mutual inductance	- 42
interpolation .	- 45	resistor	- 22
low-frequency.		-signal generato	
modulated.	69	Stroboscope, Edgerton	
piezo-electric	47, 48	Strobotac	3
radio-frequency	- 69	Switch contacts and stops	156
tuning-fork	53, 68	Switch knob	. 155
Oscillograph amplifier	73	Switches	156
camera.	- 105	Synchronous-motor contactor	. . . 4
cathode-ray electron	$\begin{array}{r}102 \\ -102 \\ \hline\end{array}$	Syncro-clock	56
Output meter	22		
power meter	121	Temperature-control	
Oxide rectifier	134	Test-signal generator .	
		Thermocouple, vacuum	136
$\underset{\text { Panel, blank }}{\text { terminal insulator }}$	147	Transformer, adjustable (Variac)	.8-10
terminal insulator.	159	audio-frequency138-145
unit	- 147	bridge . .	87, 91, 144
Piezo-electric oscillator	44, 46. 48	shielded	
Plate, quartz	- 50	variable	. 144
Plugs	158	Transmission monitoring assembly	. 109
Potentiometers, mounted unmounted	$\begin{array}{r} 27 \\ .127-131 \end{array}$	Transmitting inductor 151
Power-level indicator	120		
meter, output	- 12121	Unit-panel equipment. Universal bridge	
supply ${ }_{\text {cher }}$ Precision condenser	.123, 124	Universal bridge rack	$\begin{array}{r} 86 \\ . \quad 147 \end{array}$
fork	- $\quad 153$	Vacuum-tube bridge	
wavemeter	57	voltmeter	. 116
Primary standard of frequency	44	Variable air condenser	30-35
Quartz bars		inductor .	- 42
plate	50	Variac ${ }^{\text {transformer }}$	144
Rack, relay.	146, 147	Variometer	42
Radio-frequency	- 80	Voltage divider	131
choke	159	decade	- 21
oscillator	69	Voltmeter, oxide-rectifier	122
Ratio-arm box	92	vacuum-tube .	116
Rectifier, oxide.	134	Volume control	24, 25, 26
laboratory.	.123, 124	indicator	120
Rectifier-type wavemeter.	59		
Relay rack	.146, 147	Wave analyzer	107
Resistance box, decade	12	filter	.113, 114
bridge .	76,84	Wavemeter	57-60
unit, compensated decade	17	precision	. 57
unit, decade	14	rectifier-type	- 59

INDEX BY TYPE NUMBER

[^0]: Patlext votice. Sce Note 15 , page $\%$.

[^1]: -Registered in U. S. Patent Oflice

[^2]: Patent Notice, See Nulu 11, phge v.

[^3]: "A descriplion trt the constrmetional lelails was palilished in the

[^4]: Attenuation Range: lloxes having a maximum attenuation range of 55 db or 110 db are listed in the price list. Tyre 329-J is composed of two sections in series, one of 50 db total attenuation in steps of 5 db , and the other of 5 db , total, in steps of 0.5 db . Removable external links make either section separately available.

[^5]: *Mounterl in lane case.

[^6]: listent Fotice. See Note 19, page v.

[^7]:

[^8]: *Consists of canera (ineluding take-up motor), ifrivigg motor, base, commulator, as alescribed, but without dens.

[^9]: *'anel finish to match, Withern Eleetric or RCA graty, or IRCA fat blach, wan additional.

[^10]: Frequency clazacteristic TYre 741-G Line-to-Grin! Transtormer. Voltage step-up ratio 1:6.4

